Opto-Electronic Engineering, Volume. 50, Issue 3, 220048(2023)
Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology
Fig. 2. Cross-linking process and degree of conversion. (a) Schematic diagram of the polymerization and cross-linking process of monomer molecules[64]; (b) Degree of conversion calculated from the Raman spectra for TPP with different scanning velocities in the commercial (acrylate-based) photoresist IP-L 780[67]
Fig. 3. Distribution of the photopolymerization threshold and the damage threshold. (a) Laser exposure threshold intensity as a function of exposure time[71]; (b) Laser power threshold at different scan speeds measured by darkfield microscopy[47]; (c) Threshold laser intensities at single and multiple exposures measured by darkfield and in situ microscopy[47]
Fig. 4. Sub-diffractive feature-scale structures by TPP and topography models of Voxel. (a) Schematic diagram of the TPP[15]; (b) The prepared "nano bull"[19]; (c) The nonlinear relationship between line width and exposure time[19]; (d) Light intensity distribution of the focus, where the dotted line is the square of light intensity[47]; (e) The relationship between voxel length and exposure power[78]; (f) The relationship between voxel linewidth and exposure power[78]
Fig. 5. Schematic diagram of the TPP system. (a) Optical path diagram of a typical TPP based on the piezoelectric stage scanning[49]; (b) Schematic diagram of different scanning strategies on different substrates[17]; (c) Galvanometer scanning, (d) immersion scanning, (e) STED assised and (f) SLM based TPP system[17]
Fig. 7. The nanowires structures fabricated by STED-TPP. (a) Schematic diagram of the STED-TPP and the minimum longitudinal size of 40 nm[110]; (b) The relationship between the line width and the 532 nm CW laser and the fabricated nanowires with widths of 95 nm, 65 nm, 90 nm, and 145 nm[111]; (c) Cross-sectional intensity distributions of the initiation and inhibition laser beam, and the fabricated nanowires with width of 54 nm[112]; (d) Schematic diagram of improving resolution by increasing inhibition intensity and the fabricated nanowires with the minimum size of 9 nm[113]
Fig. 8. Periodic 3D structures fabricated based on multi-beam parallel fabrication technology.(a,b) Micro-gear and micro-bull combined structures fabricated by TPP with diffractive elements[120]; (c) 2D array structure fabricated by TPP with DMD projection[121]; (d) Parabolic mirror structure based on SLM-TPP[122]; (e-g) 3D mechanical metamaterials fabricated by TPP with diffractive elements[123]
Fig. 9. High-precision, large-scale structures fabricated by DMD TPP technology.(a) DMD holographic multi-focus 3D TPP method and the fabricated high-resolution "bridge" structure, and woodpile structures[125]; (b) The prepared Millimeter-scale structure with sub-micrometer features, micro-nano bridge structures by FP-TPL technology[126]; (c) The prepared micro-nano suspended lines and micro-metamaterial structures by projection TPP with the spatiotemporal focusing technology[127]; (d) The prepared nanowires and nanodots structures, cross-scale structures by femtosecond projection nanolithography technology[128]
Fig. 10. Photonic crystals, metamaterials, and devices. (a) Woodpile photonic crystal[131]; (b) Diamond photonic crystal[133]; (c) Heat shrinkable woodpile photonic crystal[134]; (d) Chiral helical metamaterial[135]; (e) 3D invisibility cloak structure in optical band[136]; (f) Beam deflector[137]; (g) Composite chiral photonic crystal material[138]; (h) Circularly polarized beam splitter[139]
Fig. 11. Metalens device. (a) Schematic diagram of the broadband focusing of the hybrid achromatic metalens[141]; (b) The structure of the hybrid achromatic metalens[141]; (c) The partial enlarged view[141]; (d) The imaging of the broadband near-infrared light[141]; (e) The broadband metalens, which combines nanoholes with a phase plate[142]; (f) Measured broadband focusing spot[142]; (g) The tunable multifocal 3D metalens[146]; (h) Measured zoom focusing spot[146]
Fig. 12. Integrated photonics device. (a) Miniature prism coupler[148]; (b) Low-loss fiber-on-chip coupler[149]; (c) Polarization-rotated polymer rectangular waveguide[150]; (d) Fiber-on-chip connector[153]; (e) Chip-on-chip optical connector[153]; (f) On-chip device-device optical connector[153]; (g) Microdisk cavity structure and optical interconnect waveguide structure[154]; (h) 3D curved surface photonic microcavity structure[155]
Fig. 16. Drivable micromechanical devices. (a) Remote magnetically actuated micro-rotor, micro-shield machine and 3D helical thruster[176]; (b) The pH-responsive spider micro-robot and smart micro-gripper[179]; (c) The liquid crystal elastomer-based micro-walker[180]; (d) Optical tweezers-driven micromechanical rotor[181-182]
|
Get Citation
Copy Citation Text
Yuanyuan Zhao, Feng Jin, Xianzi Dong, Meiling Zheng, Xuanming Duan. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electronic Engineering, 2023, 50(3): 220048
Category: Article
Received: Apr. 13, 2022
Accepted: Jul. 7, 2022
Published Online: May. 4, 2023
The Author Email: