Journal of Inorganic Materials, Volume. 34, Issue 1, 96(2019)

Polymer PVP Additive for Improving Stability of Perovskite Solar Cells

Hao XIONG1, Bo-Xin ZHANG1, Wei JIA2, Qing-Hong ZHANG1, Hua-Qing XIE3, [in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]1, and [in Chinese]3
Author Affiliations
  • 11. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • 22. State Key Laboratory of Space Power Technology, Shanghai Institute of Power-Sources, Shanghai 200245, China
  • 33. College of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • show less
    References(27)

    [1] HADADIAN M. CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation[D]. Adv. Mater., 28, 8681-8686(2016).

    [2] IM J H, KIM H S, LEE C R et al. 2: 591-1-7[D](2012).

    [3] MEITL M A, MENARD E, SUN Y et al. Micro and nanopatterning techniques for organic electronic and optoelectronic systems[D]. Chem. Rev., 107, 1117-1160(2007).

    [4] JEON N J, KIM Y C, NOH J H et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[D]. Nature Mater., 13, 897-903(2014).

    [5] GUO XIU-BIN, LI JING, YU WEI et al. Improving microstructure and photoelectric performance of the perovskite material via mixed solvents.[D]. Inorg. Mater., 32, 870-876(2017).

    [6] CHANG C Y, CHU C Y, HUANG Y C et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater[D]. Interfaces, 7, 4955-4961(2015).

    [7] JEON N J, NOH J H, YANG W S et al. Compositional engineering of perovskite materials for high-performance solar cells[D]. Nature, 517, 476-480(2015).

    [8] LIU Z, PANG S, ZHOU Z et al. Interface engineering for high-performance perovskite hybrid solar cells. J. Mater. Chem[D]. A, 3, 19205-19217(2015).

    [9] WANG ZENG-HUA, ZHANG MIN, ZHENG XIAO-JIA et al. Structural effect of TiO2 on the performance of MAPbBr3 solar cells.[D]. Inorg. Mater., 33, 245-250(2018).

    [10] QIN P, TAO H, YANG G et al. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem[D]. A, 4, 3970-3990(2016).

    [11] HONG C K, MALI S S. Pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides[D]. Nanoscale, 8, 10528-10540(2016).

    [12] JIANG WEN-LONG, YING JI-FEI, ZHOU WEI et al. Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers.[D]. Inorg. Mater., 32, 96-100(2017).

    [13] LIU CHANG, YUAN SHUAI, ZHANG HAI-LIANG et al. p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells.[D]. Inorg. Mater., 31, 358-364(2016).

    [14] HUANG X, ZHANG S, ZHU C et al. Porphyrin-dithienothiophene π-conjugated copolymers: synthesis and their applications in field- effect transistors and solar cells[D]. Macromolecules, 41, 6895-6902(2008).

    [15] LI Y, RUI Y, XIONG H et al. Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem[D]. C, 4, 6848-6854(2016).

    [16] GLASER T, MÜLLER C, PLOGMYER M et al. Water infiltration in methylammonium leadiodide perovskite: fast and inconspicuous[D]. Chem. Mater., 27, 7835-7841(2015).

    [17] AMEEN S, KOSA S A, RUB M A et al. Perovskite solar cells: influence of hole transporting materials on power conversion efficiency[D]. ChemSusChem, 9, 10-27(2016).

    [18] LI B, LI Y, ZHENG C et al. Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches[D]. RSC Adv., 6, 38079-38091(2016).

    [19] LYU M, YU H, ZHANG M et al[D]. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem-Eur J., 21, 434-439(2015).

    [20] CHAUDHARY B, JENA A K, KULKARNI A et al. Poly (4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells[D]. ChemSusChem, 10, 2473-2479(2017).

    [21] CLIFFORD J N, HAQUE S A, PALOMARES E et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers.[D]. Am. Chem. Soc., 125, 475-482(2003).

    [22] ALBERS F C, CORBETT J D, VON WINBUSH S. The solubility of the post-transition metals in their molten halides.[D]. Am. Chem. Soc., 79, 3020-3024(1957).

    [23] DUBEY A, MABROUK S, ZHANG W et al. Increased efficiency for perovskite photovoltaics via doping the PbI2 layer. J. Phys. Chem[D]. C, 120, 24577-24582(2016).

    [25] HU Q, LIU T, WU J et al. 6(3): 1501890-1-7[D](2016).

    [26] JEON N J, KIM Y C, NOH J H et al. 6(4): 1502104-1-8[D](2016).

    [27] GUO H, JARIWALA S, ZUO L et al. 3(8): e1700106-1-12[D](2017).

    Tools

    Get Citation

    Copy Citation Text

    Hao XIONG, Bo-Xin ZHANG, Wei JIA, Qing-Hong ZHANG, Hua-Qing XIE, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 19, 2018

    Accepted: --

    Published Online: Feb. 4, 2021

    The Author Email:

    DOI:10.15541/jim20180172

    Topics