Optics and Precision Engineering, Volume. 32, Issue 22, 3310(2024)
Design of robust disturbance observer under load variation for piezoelectric positioning platform
[1] MOHITH S, KARANTH P N, KULKARNI S M. Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application[J]. Mechatronics, 67, 102347(2020).
[2] CHEN F X, ZHANG Q J, DONG W et al. Design and test of a compact large-stroke dual-drive linear-motion system[J]. Mechanical Systems and Signal Processing, 180, 109438(2022).
[3] XUE B, BROUSSEAU E, BOWEN C. Modelling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining[J]. International Journal of Mechanical Sciences, 243, 108048(2023).
[4] FENG H R, WANG L, WANG X et al. Positioning, transfer, and rotation movements of particles manipulated by a novel piezoelectric acoustofluidic device with multiple vibration modes[J]. Smart Materials and Structures, 30, 105031(2021).
[5] AN D, LI J, YANG Y X et al. Compensation method for complex hysteresis characteristics on piezoelectric actuator based on separated level-loop Prandtl–Ishlinskii model[J]. Nonlinear Dynamics, 109, 2479-2497(2022).
[6] MOHITH S, UPADHYA A R, NAVIN K P et al. Recent trends in piezoelectric actuators for precision motion and their applications: a review[J]. Smart Material Structures, 30(2021).
[7] CHAI G, TAN Y H, TAN Q Y et al. Predictive gradient based control using Hammerstein model for MEMS micromirrors[J]. IEEE/ASME Transactions on Mechatronics, 29, 2125-2137(2024).
[8] YANG L, DING B X, LIAO W H et al. Identification of preisach model parameters based on an improved particle swarm optimization method for piezoelectric actuators in micro-manufacturing stages[J]. Micromachines, 13, 698(2022).
[9] JANAIDEH MAL, SAAIDEH MAL, RAKOTONDRABE M. On hysteresis modeling of a piezoelectric precise positioning system under variable temperature[J]. Mechanical Systems and Signal Processing, 145, 106880(2020).
[10] LI Z, SHAN J J, GABBERT U. Inverse compensation of hysteresis using krasnoselskii-pokrovskii model[J]. IEEE/ASME Transactions on Mechatronics, 23, 966-971(2018).
[11] SON N N, VAN KIEN C, ANH H P H. Parametersidentification of Bouc-Wenhysteresismodel forpiezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm[J]. Engineering Applications of Artificial Intelligence, 87, 103317(2020).
[12] WANG G, CHEN G Q. Identification of piezoelectric hysteresis by a novel Duhem model based neural network[J]. Sensors and Actuators A: Physical, 264, 282-288(2017).
[13] KUHNEN K. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified prandtl-ishlinskii approach[J]. European Journal of Control, 9, 407-418(2003).
[14] JIAN Y P, HUANG D Q, LIU J B et al. High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis[J]. IEEE Transactions on Industrial Electronics, 66, 368-377(2019).
[15] JIN J X, SUN X, CHEN Z B. Comprehensive compensation of dynamic hysteresis and creep for piezoelectric actuator[J]. Smart Materials and Structures, 33(2024).
[16] WANG Z S, XU R, WANG L N et al. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages[J]. ISA Transactions, 129, 436-445(2022).
[17] JI Y, JIANG X K, WAN L J. Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems[J]. Journal of the Franklin Institute, 357, 5019-5032(2020).
[18] SOARES D, SERPA A L. An evaluation of the influence of Eigensystem Realization Algorithm settings on multiple input multiple output system identification[J]. Journal of Vibration and Control, 28, 3286-3301(2022).
[19] DING Z A, YANG Z J, CHEN C H et al. Improved sliding mode dynamic matrix control strategy: application on spindle loading and precision measuring device based on piezoelectric actuator[J]. Mechanical Systems and Signal Processing, 167, 108543(2022).
[20] ZHAO B, QI X, SHI W J et al. Global linearization identification and compensation of nonresonant dispersed hysteresis for piezoelectric actuator[J]. IEEE/ASME Transactions on Mechatronics, 29, 614-624(2024).
[21] ZHANG Y, WANG Y W, WU J D et al. Adaptive control method for conically shaped dielectric elastomer actuator with different loads[J]. IEEE Transactions on Automation Science and Engineering, 21, 2613-2621(2024).
[22] TAO Y D, LI L L, LI H X et al. High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control[J]. IEEE Transactions on Automation Science and Engineering, 19, 2998-3006(2022).
[23] MENG Y X, CHEN Z Z, HUANG W W et al. An enhanced real-time iterative compensation method for fast tool servos with resonance suppression[J]. IEEE Transactions on Industrial Electronics, 71, 6183-6192(2024).
[24] ZHANG Y F, ZHANG J Q, SUN C S et al. System identification and tracking, antidisturbance composite control technology of voice coil actuator fast steering mirror[J]. IEEE Transactions on Industrial Electronics, 71, 11146-11155(2024).
[25] ZHANG Z M, YAN P. Infinite dimensional design approach of robust disturbance observer for a piezo-actuated nano-positioner with measurement delays[J]. IEEE/ASME Transactions on Mechatronics, 28, 3583-3588(2023).
[26] ZHENG M H, LYU X M, LIANG X et al. A generalized design method for learning-based disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 26, 45-54(2021).
[27] GU G Y, ZHU L M, SU C Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified prandtl–ishlinskii model[J]. IEEE Transactions on Industrial Electronics, 61, 1583-1595(2014).
[28] 刘浩天, 张桂林, 周克敏. 压电定位平台低阻尼谐振特性辨识及高带宽控制[J]. 振动与冲击, 43, 287-296(2024).
LIU H T, ZHANG G L, ZHOU K M. Identification of low-damping resonance characteristics and the high-bandwidth control of a piezo-positioning stage[J]. Journal of Vibration and Shock, 43, 287-296(2024).
[29] WEN C, TAN M Z, LU J Y et al. Identification of electromechanical servo systems with flexible characteristics[J]. Control Theory & Applications, 40, 663-672(2023).
闻成, 谭敏哲, 卢洁莹. 具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用, 40, 663-672(2023).
[30] LU J F, LOU J J, LIU S Y et al. Near-field acoustic holography filtering method based on Butterworth filter[J]. Ship Science and Technology, 45, 160-165(2023).
卢锦芳, 楼京俊, 刘树勇. 基于巴特沃斯滤波器的近场声全息滤波方法[J]. 舰船科学技术, 45, 160-165(2023).
[31] ZHOU K M, DOYLE J C, GLOVER K[M]. Robust and Optimal Control(1996).
[32] PACKARD A, DOYLE J. The complex structured singular value[J]. Automatica, 29, 71-109(1993).
[33] ZHOU K M, DOYLE J C. Essentials of Robust Control[M]. Prentice Hall(1997).
[34] 张臻, 辛峰, 周克敏. 压电舵机动态迟滞建模与带有鲁棒干扰观测器的两自由度控制[J]. 控制理论与应用, 36, 841-849(2019).
ZHANG Z, XIN F, ZHOU K M. Dynamic hysteresis modeling and two-degree-freedom control with robust disturbance observer for piezoelectric rudder[J]. Control Theory & Applications, 36, 841-849(2019).
[35] DUAN S Y, ZHANG G L. Modeling of dynamic characteristics and μ-synthesis control of piezoelectric positioning platform[J]. Smart Materials and Structures, 33, 105039(2024).
Get Citation
Copy Citation Text
Shiyu DUAN, Haotian LIU, Guilin ZHANG. Design of robust disturbance observer under load variation for piezoelectric positioning platform[J]. Optics and Precision Engineering, 2024, 32(22): 3310
Category:
Received: Sep. 2, 2024
Accepted: --
Published Online: Mar. 10, 2025
The Author Email: Guilin ZHANG (zhangguilin@sdust.edu.cn)