Optics and Precision Engineering, Volume. 32, Issue 22, 3310(2024)
Design of robust disturbance observer under load variation for piezoelectric positioning platform
[1] S MOHITH, P N KARANTH, S M KULKARNI. Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application. Mechatronics, 67, 102347(2020).
[2] F X CHEN, Q J ZHANG, W DONG et al. Design and test of a compact large-stroke dual-drive linear-motion system. Mechanical Systems and Signal Processing, 180, 109438(2022).
[3] B XUE, E BROUSSEAU, C BOWEN. Modelling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining. International Journal of Mechanical Sciences, 243, 108048(2023).
[4] H R FENG, L WANG, X WANG et al. Positioning, transfer, and rotation movements of particles manipulated by a novel piezoelectric acoustofluidic device with multiple vibration modes. Smart Materials and Structures, 30, 105031(2021).
[5] D AN, J LI, Y X YANG et al. Compensation method for complex hysteresis characteristics on piezoelectric actuator based on separated level-loop Prandtl–Ishlinskii model. Nonlinear Dynamics, 109, 2479-2497(2022).
[6] S MOHITH, A R UPADHYA, K P NAVIN et al. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Material Structures, 30(2021).
[7] G CHAI, Y H TAN, Q Y TAN et al. Predictive gradient based control using Hammerstein model for MEMS micromirrors. IEEE/ASME Transactions on Mechatronics, 29, 2125-2137(2024).
[8] L YANG, B X DING, W H LIAO et al. Identification of preisach model parameters based on an improved particle swarm optimization method for piezoelectric actuators in micro-manufacturing stages. Micromachines, 13, 698(2022).
[9] MAL JANAIDEH, MAL SAAIDEH, M RAKOTONDRABE. On hysteresis modeling of a piezoelectric precise positioning system under variable temperature. Mechanical Systems and Signal Processing, 145, 106880(2020).
[10] Z LI, J J SHAN, U GABBERT. Inverse compensation of hysteresis using krasnoselskii-pokrovskii model. IEEE/ASME Transactions on Mechatronics, 23, 966-971(2018).
[11] N N SON, C VAN KIEN, H P H ANH. Parametersidentification of Bouc-Wenhysteresismodel forpiezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm. Engineering Applications of Artificial Intelligence, 87, 103317(2020).
[12] G WANG, G Q CHEN. Identification of piezoelectric hysteresis by a novel Duhem model based neural network. Sensors and Actuators A: Physical, 264, 282-288(2017).
[13] K KUHNEN. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified prandtl-ishlinskii approach. European Journal of Control, 9, 407-418(2003).
[14] Y P JIAN, D Q HUANG, J B LIU et al. High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis. IEEE Transactions on Industrial Electronics, 66, 368-377(2019).
[15] J X JIN, X SUN, Z B CHEN. Comprehensive compensation of dynamic hysteresis and creep for piezoelectric actuator. Smart Materials and Structures, 33(2024).
[16] Z S WANG, R XU, L N WANG et al. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages. ISA Transactions, 129, 436-445(2022).
[17] Y JI, X K JIANG, L J WAN. Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. Journal of the Franklin Institute, 357, 5019-5032(2020).
[18] D SOARES, A L SERPA. An evaluation of the influence of Eigensystem Realization Algorithm settings on multiple input multiple output system identification. Journal of Vibration and Control, 28, 3286-3301(2022).
[19] Z A DING, Z J YANG, C H CHEN et al. Improved sliding mode dynamic matrix control strategy: application on spindle loading and precision measuring device based on piezoelectric actuator. Mechanical Systems and Signal Processing, 167, 108543(2022).
[20] B ZHAO, X QI, W J SHI et al. Global linearization identification and compensation of nonresonant dispersed hysteresis for piezoelectric actuator. IEEE/ASME Transactions on Mechatronics, 29, 614-624(2024).
[21] Y ZHANG, Y W WANG, J D WU et al. Adaptive control method for conically shaped dielectric elastomer actuator with different loads. IEEE Transactions on Automation Science and Engineering, 21, 2613-2621(2024).
[22] Y D TAO, L L LI, H X LI et al. High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control. IEEE Transactions on Automation Science and Engineering, 19, 2998-3006(2022).
[23] Y X MENG, Z Z CHEN, W W HUANG et al. An enhanced real-time iterative compensation method for fast tool servos with resonance suppression. IEEE Transactions on Industrial Electronics, 71, 6183-6192(2024).
[24] Y F ZHANG, J Q ZHANG, C S SUN et al. System identification and tracking, antidisturbance composite control technology of voice coil actuator fast steering mirror. IEEE Transactions on Industrial Electronics, 71, 11146-11155(2024).
[25] Z M ZHANG, P YAN. Infinite dimensional design approach of robust disturbance observer for a piezo-actuated nano-positioner with measurement delays. IEEE/ASME Transactions on Mechatronics, 28, 3583-3588(2023).
[26] M H ZHENG, X M LYU, X LIANG et al. A generalized design method for learning-based disturbance observer. IEEE/ASME Transactions on Mechatronics, 26, 45-54(2021).
[27] G Y GU, L M ZHU, C Y SU. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified prandtl–ishlinskii model. IEEE Transactions on Industrial Electronics, 61, 1583-1595(2014).
[28] 刘浩天, 张桂林, 周克敏. 压电定位平台低阻尼谐振特性辨识及高带宽控制. 振动与冲击, 43, 287-296(2024).
H T LIU, G L ZHANG, K M ZHOU. Identification of low-damping resonance characteristics and the high-bandwidth control of a piezo-positioning stage. Journal of Vibration and Shock, 43, 287-296(2024).
[29] C WEN, M Z TAN, J Y LU et al. Identification of electromechanical servo systems with flexible characteristics. Control Theory & Applications, 40, 663-672(2023).
闻成, 谭敏哲, 卢洁莹. 具有柔性特性的机电伺服系统辨识. 控制理论与应用, 40, 663-672(2023).
[30] J F LU, J J LOU, S Y LIU et al. Near-field acoustic holography filtering method based on Butterworth filter. Ship Science and Technology, 45, 160-165(2023).
卢锦芳, 楼京俊, 刘树勇. 基于巴特沃斯滤波器的近场声全息滤波方法. 舰船科学技术, 45, 160-165(2023).
[31] K M ZHOU, J C DOYLE, K GLOVER. Robust and Optimal Control(1996).
[32] A PACKARD, J DOYLE. The complex structured singular value. Automatica, 29, 71-109(1993).
[33] K M ZHOU, J C DOYLE. Essentials of Robust Control. Prentice Hall(1997).
[34] 张臻, 辛峰, 周克敏. 压电舵机动态迟滞建模与带有鲁棒干扰观测器的两自由度控制. 控制理论与应用, 36, 841-849(2019).
Z ZHANG, F XIN, K M ZHOU. Dynamic hysteresis modeling and two-degree-freedom control with robust disturbance observer for piezoelectric rudder. Control Theory & Applications, 36, 841-849(2019).
[35] S Y DUAN, G L ZHANG. Modeling of dynamic characteristics and μ-synthesis control of piezoelectric positioning platform. Smart Materials and Structures, 33, 105039(2024).
Get Citation
Copy Citation Text
Shiyu DUAN, Haotian LIU, Guilin ZHANG. Design of robust disturbance observer under load variation for piezoelectric positioning platform[J]. Optics and Precision Engineering, 2024, 32(22): 3310
Category:
Received: Sep. 2, 2024
Accepted: --
Published Online: Mar. 10, 2025
The Author Email: ZHANG Guilin (zhangguilin@sdust.edu.cn)