Optics and Precision Engineering, Volume. 32, Issue 9, 1293(2024)
Research developments of extreme ultra-violet multilayers for 40-90 nm
[1] D H BROOKS, S L YARDLEY. The source of the major solar energetic particle events from super active region 11944. Science Advances, 7(2021).
[3] J ZHANG, M TEMMER, N GOPALSWAMY et al. Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 8, 56(2021).
[4] R MARSDEN, D MÜLLER, D HASSLER et al. Solar orbiter: exploring the Sun-heliosphere connection, solar orbiter assessment study report. Sol Phys., 285, 25-70(2013).
[5] R TOUSEY. Solar spectroscopy from Rowland to SOT. Vistas in Astronomy, 29, 175-199(1986).
[6] S BOWYER. Astronomy and the Extreme Ultraviolet Explorer satellite. Science, 263, 55-59(1994).
[7] S BOWYER. Extreme ultraviolet astronomy. Scientific American, 271, 32-39(1994).
[8] G HORNECK, N WALTER, F WESTALL et al. AstRoMap European astrobiology roadmap. Astrobiology, 16, 201-243(2016).
[9] J J DRAKE, P N CHEIMETS, C GARRAFFO et al. NExtUP: the normal-incidence extreme ultraviolet photometer, 11821, 1182108(2021).
[10] K C FRANCE, B T FLEMING, A YOUNGBLOOD et al. EUV spectroscopy with the ESCAPE mission: exploring the stellar drivers of exoplanet habitability. SPIE, 11444, 1114405(2020).
[11] E SPILLER. Low-loss reflection coatings using absorbing materials. Applied Physics Letters, 20, 365-367(1972).
[12] J H UNDERWOOD, M E BRUNER, B M HAISCH et al. X-ray photographs of a solar active region with a multilayer telescope at normal incidence. Science, 238, 61-64(1987).
[13] B N HANDY, L W ACTON, C C KANKELBORG et al. The transition region and coronal explorer. Solar Physics, 187, 229-260(1999).
[14] J P WUELSER, J R LEMEN, T D TARBELL et al. EUVI: the STEREO-SECCHI extreme ultraviolet imager, 5171, 111-122(2004).
[15] J L CULHANE, L K HARRA, A M JAMES et al. The EUV imaging spectrometer for hinode. Solar Physics, 243, 19-61(2007).
[16] J R LEMEN, A M TITLE, D J AKIN et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275, 17-40(2012).
[17] D B SEATON, D BERGHMANS, B NICULA et al. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Physics, 286, 43-65(2013).
[18] V A SLEMZIN, S V KUZIN, I A ZHITNIK et al. Observations of solar EUV radiation with the CORONAS-F/SPIRIT and SOHO/EIT instruments. Solar System Research, 39, 489-500(2005).
[19] D MART\'\INEZ-GALARCE, R SOUFLI, D L WINDT et al. Multisegmented, multilayer-coated mirrors for the Solar Ultraviolet Imager. Optical Engineering, 52(2013).
[20] S V KUZIN, I A ZHITNIK, S V SHESTOV et al. The TESIS experiment on the CORONAS-PHOTON spacecraft. Solar System Research, 45, 162-173(2011).
[21] X Y BAI, H TIAN, Y Y DENG et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite. Research in Astronomy and Astrophysics, 23(2023).
[22] D L WINDT. IMD—software for modeling the optical properties of multilayer films. Computers in Physics, 12, 360-370(1998).
[23] E SPILLER.
[24] J H UNDERWOOD, T WJR BARBEE. Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance. Applied Optics, 20, 3027-3034(1981).
[25] S BRAUN, M MOSS et al. Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors. Japanese Journal of Applied Physics, 41, 4074-4081(2002).
[26] J T ZHU, S K ZHOU, H C LI et al. Thermal stability of Mg/Co multilayer with B4C, Mo or Zr diffusion barrier layers. Optics Express, 19, 21849(2011).
[27] S P HUANG, B JI, J ZHOU et al. Improving the EUV reflectivity of Mg/SiC multilayers by inserting Zr barrier layers at the SiC-on-Mg interfaces. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 832, 184-186(2016).
[28] P SARKAR, A BISWAS, R KUMAR et al. Role of C and B4C barrier layers in controlling diffusion propagation across the interface of Cr/Sc multilayers. Physical Chemistry Chemical Physics, 25, 3072-3082(2023).
[29] D L WINDT, E M GULLIKSON. Pd/B4C/Y multilayer coatings for extreme ultraviolet applications near 10 nm wavelength. Applied Optics, 54, 5850-5860(2015).
[30] V I T A DE ROOIJ-LOHMANN, L W VELDHUIZEN, E ZOETHOUT et al. Chemical interaction of B4C, B, and C with Mo/Si layered structures. Journal of Applied Physics, 108(2010).
[31] J BOSGRA, L W VELDHUIZEN, E ZOETHOUT et al. Interactions of C in layered Mo-Si structures. Thin Solid Films, 542, 210-213(2013).
[32] B KJORNRATTANAWANICH, S BAJT, J F SEELY. Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm. Applied Optics, 43, 1082-1090(2004).
[33] J I LARRUQUERT. New layer-by-layer multilayer design method. Journal of the Optical Society of America A, 19, 385-390(2002).
[34] J GAUTIER, F DELMOTTE, M ROULLIAY et al. Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm. Applied Optics, 44, 384-390(2005).
[35] S BAJT, H N CHAPMAN, N NGUYEN et al. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors. Applied Optics, 42, 5750-5758(2003).
[36] A J CORSO, P ZUPPELLA, P NICOLOSI et al. Capped Mo/Si multilayers with improved performance at 304 nm for future solar missions. Optics Express, 19, 13963-13973(2011).
[37] B L HENKE, E M GULLIKSON, J C DAVIS. X-ray Interactions: photoabsorption, scattering, transmission and reflection at
[38] L R D MARCOS, J I LARRUQUERT, M VIDAL-DASILVA et al. Transmittance and optical constants of Ca films in the 4-1000 eV spectral range. Applied Optics, 54, 1910-1917(2015).
[39] M FERNÁNDEZ-PEREA, J I LARRUQUERT, J A AZNÁREZ et al. Determination of optical constants of scandium films in the 20-1000 eV range. Journal of the Optical Society of America A, 23, 2880-2887(2006).
[40] B KJORNRATTANAWANICH, D L WINDT, J A BELLOTTI et al. Measurement of dysprosium optical constants in the 2-830 eV spectral range using a transmittance method, and compilation of the revised optical constants of lanthanum, terbium, neodymium, and gadolinium. Applied Optics, 48, 3084-3093(2009).
[41] B KJORNRATTANAWANICH, D L WINDT, Y A USPENSKII et al. Optical constants determination of neodymium and gadolinium in the 3-to 100-nm wavelength range. SPIE Optics + Photonics, 6317(2006).
[42] B KJORNRATTANAWANICH, D L WINDT, J F SEELY. Optical constants determination of samarium, holmium, and erbium in the 1.5-850 eV spectral range using a transmittance method. Applied Optics, 49, 6006-6013(2010).
[43] L R MARCOS, J LARRUQUERT, J AZNÁREZ et al. Transmittance and optical constants of Sr films in the 6-1220 eV spectral range. Journal of Applied Physics, 111, 113533(2012).
[44] J I LARRUQUERT, J A AZNÁREZ, J A MÉNDEZ et al. Optical properties of scandium films in the far and the extreme ultraviolet. Applied Optics, 43, 3271-3278(2004).
[45] M FERNÁNDEZ-PEREA, J A AZNÁREZ, J I LARRUQUERT et al. Transmittance and extinction coefficient of Ce films measured
[46] J I LARRUQUERT, M FERNÁNDEZ-PEREA, J A AZNÁREZ et al. Determination of the transmittance and extinction coefficient of Yb films in the 23-1700 eV range. Components, 6317(2006).
[47] M FERNÁNDEZ-PEREA, J A AZNÁREZ, J I LARRUQUERT et al. Transmittance and optical constants of Ce films in the 6-1200eV spectral range. Journal of Applied Physics, 103(2008).
[48] M FERNÁNDEZ-PEREA, M VIDAL-DASILVA, J A AZNÁREZ et al. Transmittance and optical constants of Pr films in the 4-1600eV spectral range. Journal of Applied Physics, 103, 113515(2008).
[49] M FERNÁNDEZ-PEREA, M VIDAL-DASILVA, J A AZNÁREZ et al. Transmittance and optical constants of Eu films from 8.3 to 1400 eV. J Appl Phys, 104, 123527(2008).
[50] M VIDAL-DASILVA, M FERNÁNDEZ-PEREA, J A AZNÁREZ et al. Transmittance and optical constants of Tm films in the 2.75-1600 eV spectral range. Journal of Applied Physics, 105, 103110(2009).
[51] M FERNÁNDEZ-PEREA, M VIDAL-DASILVA, J I LARRUQUERT et al. Optical constants of evaporation-deposited silicon monoxide films in the 7.1-800 eV photon energy range. Journal of Applied Physics, 105, 113505(2009).
[52] S GARCÍA-CORTÉS, L RODRÍGUEZ-DE MARCOS, J I LARRUQUERT et al. Transmittance and optical constants of Lu films in the 3-1800 eV spectral range. Journal of Applied Physics, 108(2010).
[53] M FERNÁNDEZ-PEREA, J I LARRUQUERT, J A AZNÁREZ et al. Transmittance and optical constants of Ho films in the 3-1340 eV spectral range. Journal of Applied Physics, 109(2011).
[54] L RODRÍGUEZ-DE MARCOS, J I LARRUQUERT, J A AZNÁREZ et al. Transmittance and optical constants of Sr films in the 6-1220 eV spectral range. Journal of Applied Physics, 111, 113533(2012).
[55] Y A USPENSKII, J F SEELY, N L POPOV et al. Efficient method for the determination of extreme-ultraviolet optical constants in reactive materials: application to scandium and titanium. Journal of the Optical Society of America A, 21, 298-305(2004).
[56] J F SEELY, Y A USPENSKII, B KJORNRATTANAWANICH et al. Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb. Components, 6317(2006).
[57] M FERNÁNDEZ-PEREA, R SOUFLI, J C ROBINSON et al. Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region. Optics Express, 20, 24018-24029(2012).
[58] M VIDAL-DASILVA, M FERNÁNDEZ-PEREA, J I LARRUQUERT et al. Narrowband multilayer mirrors for the extreme ultraviolet spectral range of 50 to 95 nm, 7448(2009).
[59] J T ZHU, S K ZHOU, H C LI et al. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength. Applied Optics, 49, 3922-3925(2010).
[60] T EJIMA, A YAMAZAKI, T BANSE et al. Aging and thermal stability of Mg/SiC and Mg/Y2O3 reflection multilayers in the 25-35 nm region. Applied Optics, 44, 5446-5453(2005).
[61] J T ZHU, Z S WANG, Z ZHANG et al. High reflectivity multilayer for He-II radiation at 30.4 nm. Applied Optics, 47, C310-C314(2008).
[62] I YOSHIKAWA, T MURACHI, H TAKENAKA et al. Multilayer coating for 30.4 nm. Review of Scientific Instruments, 76(2005).
[63] A AQUILA, F SALMASSI, Y W LIU et al. Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light. Optics Express, 17, 22102-22107(2009).
[64] H C LI, J T ZHU, Z S WANG et al. Asymmetrical diffusion at interfaces of Mg/SiC multilayers. Optical Materials Express, 3, 546-555(2013).
[65] P BOERNER, C EDWARDS, J LEMEN et al. Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275, 41-66(2012).
[66] R SOUFLI, M FERNÁNDEZ-PEREA, S L BAKER et al. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings. Applied Physics Letters, 101(2012).
[67] M PELIZZO, S FINESCHI, A CORSO et al. Long-term stability of Mg/SiC multilayers. Optical Engineering, 51(2012).
[68] S Y ZUEV, S V KUZIN, V N POLKOVNIKOV et al. Componentry of reflection optics for application in the tesis X-ray astrophysics experiment. Bulletin of the Russian Academy of Sciences: Physics, 74, 50-52(2010).
[69] S A BOGACHEV, N I CHKHALO, S V KUZIN et al. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy. Applied Optics, 55, 2126-2135(2016).
[70] V N POLKOVNIKOV, N I CHKHALO, R S PLESHKOV et al. Stable high-reflection Be/Mg multilayer mirrors for solar astronomy at 30.4 nm. Optics Letters, 44, 263-266(2019).
[71] Y A USPENSKII, V E LEVASHOV, A V VINOGRADOV et al. High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm. Optics Letters, 23, 771-773(1998).
[72] S A YULIN, F SCHAEFERS, T FEIGL et al. Enhanced reflectivity and stability of Sc/Si multilayers, 5193, 155-163(2004).
[73] J GAUTIER, F DELMOTTE, F BRIDOU et al. Characterization and optimization of magnetron sputtered Sc/Si multilayers for extreme ultraviolet optics. Applied Physics A, 88, 719-725(2007).
[74] D L VORONOV, E N ZUBAREV, V V KONDRATENKO et al. Study of fast diffusion species in Sc/Si multilayers by W-based marker analysis. Thin Solid Films, 513, 152-158(2006).
[75] J T ZHU, J Y ZHANG, H JIANG et al. Interface study on the effect of carbon and boron carbide diffusion barriers in Sc/Si multilayer system. ACS Applied Materials & Interfaces, 12, 25400-25408(2020).
[76] J GAUTIER, F DELMOTTE, M ROULLIAY et al. Performances and stability of Sc/Si multilayers with barrier layers for wavelengths around 46 nm, 5963(2005).
[77] Y P PERSHYN, E N ZUBAREV, V V KONDRATENKO et al. Reactive diffusion in Sc/Si multilayer X-ray mirrors with CrB2 barrier layers. Applied Physics A, 103, 1021-1031(2011).
[78] R Z QI, J L WU, J YU et al. Narrowband EUV Sc/Si multilayer for the solar upper transition region imager at 46.5 nm. Research in Astronomy and Astrophysics, 23, 105002(2023).
[79] J L WU, R Z QI, Z ZHANG et al. Structural and optical properties of narrowband Sc/Si multilayer at 46.5 nm. Frontiers in Physics, 10, 933301(2022).
[80] F DELMOTTE, M DEHLINGER, C BOURASSIN-BOUCHET et al. Multilayer optics for coherent EUV/X-ray laser sources, 9589(2015).
[81] J REBELLATO, R SOUFLI, E MELTCHAKOV et al. High efficiency Al/Sc-based multilayer coatings in the EUV wavelength range above 40 nanometers. Optics Letters, 45, 869-872(2020).
[82] N CHKHALO, V POLKOVNIKOV, N SALASH CHENKO et al. Reflecting properties of narrowband Si/Al/Sc multilayer mirrors at 58.4 nm. Optics Letters, 45, 4666-4669(2020).
[83] J REBELLATO, R SOUFLI, E MELTCHAKOV et al. Optical, structural and aging properties of Al/Sc-based multilayers for the extreme ultraviolet. Thin Solid Films, 735, 138873(2021).
[84] N I CHKHALO, M N DROZDOV, A Y LOPATIN et al. Study of the temporal stability of the reflection coefficient in the vicinity of 58.4nm of narrow-band Sc/Al mirrors with Si or ScN interlayers and a MoSi2 protective cap layer. Thin Solid Films, 783, 140047(2023).
[85] D L WINDT, J F SEELY, B KJORNRATTANAWANICH et al. Terbium-based extreme ultraviolet multilayers. Optics Letters, 30, 3186-3188(2005).
[86] B KJORNRATTANAWANICH, D L WINDT, J F SEELY et al. SiC/Tb and Si/Tb multilayer coatings for extreme ultraviolet solar imaging. Applied Optics, 45, 1765-1772(2006).
[87] B KJORNRATTANAWANICH, D L WINDT, J F SEELY. Normal-incidence silicon–gadolinium multilayers for imaging at 63 nm wavelength. Optics Letters, 33, 965-967(2008).
[88] D L WINDT, J A BELLOTTI, B KJORNRATTANAWANICH et al. Performance optimization of Si/Gd extreme ultraviolet multilayers. Applied Optics, 48, 5502-5508(2009).
[89] M VIDAL-DASILVA, M FERNANDEZ-PEREA, J A MENDEZ et al. Narrowband multilayer mirrors for the extreme ultraviolet spectral range of 50 to 95 nm. Opt Express, 17, 22773-22784(2009).
[90] V N POLKOVNIKOV, N I CHKHALO, E MELTCHAKOV et al. Stable multilayer reflective coatings for λ(HeI)=58.4 nm for the KORTES solar telescope. Technical Physics Letters, 45, 85-88(2019).
[91] J I LARRUQUERT, R A M KESKI-KUHA. Sub-quarter-wave multilayer coatings with high reflectance in the extreme ultraviolet. Applied Optics, 41, 5398-5404(2002).
[92] J NILSEN. Designing a high-reflectivity normal-incidence Ge/Si multilayer X-ray mirror for the 44–50 nm wavelength range. OSA Continuum, 3, 3460-3467(2020).
Get Citation
Copy Citation Text
Bo LAI, Li JIANG, Runze Qi, Zhanshan WANG. Research developments of extreme ultra-violet multilayers for 40-90 nm[J]. Optics and Precision Engineering, 2024, 32(9): 1293
Category:
Received: Apr. 17, 2024
Accepted: --
Published Online: Jun. 2, 2024
The Author Email: WANG Zhanshan (wangzs@tongji.edu.cn)