Optics and Precision Engineering, Volume. 19, Issue 12, 3064(2011)

Implementation of SLAM by probability hypothesis density filter

DU Hang-yuan*... HAO Yan-ling, ZHAO Yu-xin and YANG Yong-peng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] SMITH R, SELF M, CHESSEMAN P. Estimating uncertain spatial relationships in robotics[C]. Proceedings of Conference on Uncertainty in Artificial Intelligence. Amsterdam: North Holland, 1988:435-461.

    [2] [2] DISSANAYAKE G, NEWMAN P, CLARK S, et al.. A solution to the simultaneous localization and map building(SLAM) problem[J]. IEEE Trans on Robotics and Automation, 2001, 17(3):229-241.

    [3] [3] THRUN S, KOLLER D, GHAHMARANI Z, et al.. Simultaneous localization and mapping with sparse extended information filters: theory and initial results[J]. Springer Tracts in Advanced Robotics, 2004, 7:363-380.

    [4] [4] PAZ L M, TARDOS J D, NEIRA J. Divide and conquer: EKF SLAM in O(n)[J]. IEEE Transactions on Robotics, 2008, 24(5):1107-1120.

    [5] [5] MONTEMERLO M, THRUN S, KOLLER D, et al.. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]. Proc of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002:593-598.

    [6] [6] MONTEMERLO M, THRUN S, KOLLER D, et al.. FastSLAM2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]. Proc of the 6th International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 2003:1151-1156.

    [7] [7] KIM C, SAKTHIVEL R, CHUNG W K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem[J]. IEEE Transactions on Robotics, 2008, 24(4):808-820.

    [8] [8] KAESS M, RANGANATHAN A, DELLAERT F. iSAM: incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6):1365-1378.

    [9] [9] HUANG SH D, WANG ZH, DISSANAYAKE G. Sparse local submap joining filter for building large-scale maps[J]. IEEE Transactions on Robotics, 2008, 24(5):1121-1130.

    [10] [10] NI K, DELLAERT F. Multi-level submap based SLAM using nested dissection[C]. Proc of the International Conference on Intelligent Robots and Systems. Taipei: IEEE Press, 2010:2558-2565.

    [11] [11] CADENA C, NEIRA J. SLAM in O(lgn) with the combined Kalman-information filter[J]. Robotics and Autonomous Systems, 2010, 58(11):1207-1219.

    [12] [12] DONG J F, WIJESOMA W S, SHACKLOCK A P. An efficient rao-blackwellized genetic algorithmic filter for SLAM[C]. Proc of the 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE Press, 2007:2427-2432.

    [13] [13] CHATTERJEE A, MATSUNO F. A neuro-fuzzy assisted extended kalman filter-based approach for simultaneous localization and mapping (SLAM) problems[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(5):984-997.

    [14] [14] MAHLER R. Statistical Multisource Multitarget Information Fusion [M]. Boston: Artech House Publishers, 2007.

    [15] [15] MA W K, VO B N. Tracking an unknown time varying number of speakers using TDOA measurements: a random finite set approach[J]. IEEE Transactions on Signal Processing, 2006, 54(11):3291-3304.

    [16] [16] VO B N, MA W K. The Gaussian mixture probabililty hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104.

    [17] [17] YIN J J, ZHANG J Q, ZHUANG Z S. Gaussian-sum PHD filtering algorithms for nonlinear non-Gaussian models[J]. Chinese Journal of Aeronautics, 2008, 24(4): 341-351.

    [18] [18] MAHLER R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(4):1152-1178.

    [19] [19] BO B T. Random finite set in multi-object filtering[D]. Perth: University of Western Australia, 2008.

    [20] [20] MURPHY K P. Bayesian map leaming in dynamic environments[C]. Proc of Advances in Neural Information Processing System. Denver, USA: MIT Press, 2000, 12: 1015-1021.

    [21] [21] SCHOENBERG F. Transforming spatial point processes into Poisson processes[J].Stochastic Processes and Their Applications, 1999, 81(2):155-164.

    [22] [22] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3):264-323.

    [23] [23] PANTA K, VO B N, SINGH S, et al.. Probability hypothesis density filter versus multiple hypothesis tracking[C]. Proc of Signal Processing, Sensor Fusion, and Target Recognition XIII. Orlando, USA: SPIE, Bellingham, WA, 2004, 284-295.

    [24] [24] Australian Centre for Field Robotics. Souce Code[DB/OL]. (2008-06-10) [2011-5-30]. http://www-personal.acfr.usyd. edu.au/tbailey/.

    CLP Journals

    [1] JIA Song-min, LI Bo-yang, ZHANG Guo-liang. TSDF map building based on hybrid loopback detection and closed-loop optimization[J]. Optics and Precision Engineering, 2018, 26(6): 1497

    [2] CAO Tian-yang, CAI Hao-yuan, FANG Dong-ming, LIU Chang. Robot vision system for keyframe global map establishment and robot localization based on graphic content matching[J]. Optics and Precision Engineering, 2017, 25(8): 2221

    Tools

    Get Citation

    Copy Citation Text

    DU Hang-yuan, HAO Yan-ling, ZHAO Yu-xin, YANG Yong-peng. Implementation of SLAM by probability hypothesis density filter[J]. Optics and Precision Engineering, 2011, 19(12): 3064

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 2, 2011

    Accepted: --

    Published Online: Dec. 22, 2011

    The Author Email: Hang-yuan DU (dhy6979012@126.com)

    DOI:10.3788/ope.20111912.3064

    Topics