Acta Optica Sinica, Volume. 42, Issue 23, 2313001(2022)

Integrated Chalcogenide Photonics

Bin Zhang1,2、* and Zhaohui Li1,2,3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, Guangdong , China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, Guangdong , China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, Guangdong , China
  • show less
    References(182)

    [1] Zhu N H, Li M, Hao Y. Optoelectronic devices and integration technologies[J]. Scientia Sinica (Informationis), 46, 1156-1174(2016).

    [2] Yu S Y. Main technologies and challenges in photonic integration[J]. Optics & Optoelectronic Technology, 17, 6-12(2019).

    [3] Chu T. Silicon-based optoelectronic integrated devices[J]. Optics & Optoelectronic Technology, 17, 5-9(2019).

    [4] Spencer D T, Drake T, Briles T C et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [5] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [6] Shen B Q, Chang L, Liu J Q et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).

    [7] Riemensberger J, Lukashchuk A, Karpov M et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 581, 164-170(2020).

    [8] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).

    [9] Balram K C, Davanço M I, Song J D et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[J]. Nature Photonics, 10, 346-352(2016).

    [10] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).

    [11] Wang X, Liu Y J, Zhang Z M et al. Research progress in 2 μm waveband on-chip photonic integrated devices(Invited)[J]. Infrared and Laser Engineering, 51, 20220087(2022).

    [12] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [13] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).

    [14] Xiang C, Liu J Q, Guo J et al. Laser soliton microcombs heterogeneously integrated on silicon[J]. Science, 373, 99-103(2021).

    [15] Guidry M A, Lukin D M, Yang K Y et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).

    [16] Liu X W, Gong Z, Bruch A W et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing[J]. Nature Communications, 12, 5428(2021).

    [17] Chang L, Xie W Q, Shu H W et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [18] Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019).

    [19] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 5, 141-148(2011).

    [20] Yamane M, Asahara Y[M]. Glasses for photonics(2000).

    [21] Asobe M, Kanamori T, Naganuma K et al. Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers[J]. Journal of Applied Physics, 77, 5518-5523(1995).

    [22] Chen X, Xia L, Li W et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber[J]. Chinese Optics Letters, 15, 042901(2017).

    [23] Thielen P A, Shaw L B, Pureza P C et al. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 28, 1406-1408(2003).

    [24] Woods-Robinson R, Han Y B, Zhang H Y et al. Wide band gap chalcogenide semiconductors[J]. Chemical Reviews, 120, 4007-4055(2020).

    [25] Su Y K, Zhang Y[M]. Passive silicon photonics devices(2022).

    [26] Leidinger M, Fieberg S, Waasem N et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range[J]. Optics Express, 23, 21690-21705(2015).

    [27] Su Y K, Zhang Y, Qiu C Y et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications[J]. Advanced Materials Technologies, 5, 1901153(2020).

    [28] Kischkat J, Peters S, Gruska B et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Applied Optics, 51, 6789-6798(2012).

    [29] Sanghera J S, Shaw L B, Busse L E et al. Development and infrared applications of chalcogenide glass optical fibers[J]. Fiber and Integrated Optics, 19, 251-274(2000).

    [30] Zhang B, Zeng P Y, Yang Z L et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation[J]. Photonics Research, 9, 1272-1279(2021).

    [31] Gai X, Madden S, Choi D et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1·m-1 at 1550 nm[J]. Optics Express, 18, 18866-18874(2010).

    [32] Du Q Y, Luo Z Q, Zhong H K et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 6, 506-510(2018).

    [33] Foster M A, Turner A C, Lipson M et al. Nonlinear optics in photonic nanowires[J]. Optics Express, 16, 1300-1320(2008).

    [34] Aitchison J S, Hutchings D C, Kang J U et al. The nonlinear optical properties of AlGaAs at the half band gap[J]. IEEE Journal of Quantum Electronics, 33, 341-348(1997).

    [35] Ikeda K, Fainman Y. Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities[J]. Solid-State Electronics, 51, 1376-1380(2007).

    [36] Dolgaleva K, Ng W C, Qian L et al. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion[J]. Optics Express, 19, 12440-12455(2011).

    [37] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).

    [38] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).

    [39] Puckett M W, Liu K K, Chauhan N et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth[J]. Nature Communications, 12, 934(2021).

    [40] Ji X C, Barbosa F A S, Roberts S P et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 4, 619-624(2017).

    [41] Liu X W, Sun C Z, Xiong B et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs[J]. ACS Photonics, 5, 1943-1950(2018).

    [42] Zheng Y Z, Sun C Z, Xiong B et al. Integrated gallium nitride nonlinear photonics[J]. Laser & Photonics Reviews, 16, 2100071(2022).

    [43] Wilson D J, Schneider K, Hönl S et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photonics, 14, 57-62(2020).

    [44] Chen Y, Shen X, Wang R P et al. Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation[J]. Journal of Alloys and Compounds, 548, 155-160(2013).

    [45] Ramachandran S, Bishop S G. Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 260-270(2005).

    [46] Saito Y, Fons P, Bolotov L et al. A two-step process for growth of highly oriented Sb2Te3 using sputtering[J]. AIP Advances, 6, 045220(2016).

    [47] Nazabal V, Jurdyc A M, Němec P et al. Amorphous Tm3+ doped sulfide thin films fabricated by sputtering[J]. Optical Materials, 33, 220-226(2010).

    [48] Nazabal V, Charpentier F, Adam J L et al. Sputtering and pulsed laser deposition for near- and mid-infrared applications: a comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films[J]. International Journal of Applied Ceramic Technology, 8, 990-1000(2011).

    [49] Olivier M, Němec P, Boudebs G et al. Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films[J]. Optical Materials Express, 5, 781-793(2015).

    [50] Chern G C, Lauks I, Norian K H. Spin-coated amorphous chalcogenide films: photoinduced effects[J]. Thin Solid Films, 123, 289-296(1985).

    [51] Kohoutek T, Wagner T, Orava J et al. Amorphous films of Ag-As-S system prepared by spin-coating technique, preparation techniques and films physico-chemical properties[J]. Vacuum, 76, 191-194(2004).

    [52] Gai X, Han T, Prasad A et al. Progress in optical waveguides fabricated from chalcogenide glasses[J]. Optics Express, 18, 26635-26646(2010).

    [53] Xia D, Huang Y F, Zhang B et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators[J]. Laser & Photonics Reviews, 16, 2100443(2022).

    [54] Mochalov L, Logunov A, Markin A et al. Characteristics of the Te-based chalcogenide films dependently on the parameters of the PECVD process[J]. Optical and Quantum Electronics, 52, 197(2020).

    [55] Mochalov L, Nezhdanov A, Kudryashov M et al. Influence of plasma-enhanced chemical vapor deposition parameters on characteristics of As-Te chalcogenide films[J]. Plasma Chemistry and Plasma Processing, 37, 1417-1429(2017).

    [56] Mochalov L, Kudryashov M, Logunov A et al. Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach[J]. Superlattices and Microstructures, 111, 1104-1112(2017).

    [57] Wang C, Wang Y H, Xiong Z Z et al. The optical properties of GeSe2 nano-films prepared by CVD[J]. Optical Materials, 100, 109697(2020).

    [58] Geiger S, Du Q Y, Huang B et al. Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry[J]. Optical Materials Express, 9, 2252-2263(2019).

    [59] Özhan A E S, Hacaloğlu T, Kaftanoğlu B. Development of hard, anti-reflective coating for mid wave infrared region[J]. Infrared Physics & Technology, 119, 103910(2021).

    [60] Whitham P J, Strommen D P, Lau L D et al. Thin film growth of germanium selenides from PECVD of GeCl4 and dimethyl selenide[J]. Plasma Chemistry and Plasma Processing, 31, 251-256(2011).

    [61] Nezhdanov A, Usanov D, Kudryashov M et al. Impact of composition and ex-situ laser irradiation on the structure and optical properties of As-S-based films synthesized by PECVD[J]. Optical Materials, 96, 109292(2019).

    [62] Mochalov L, Dorosz D, Nezhdanov A et al. Investigation of the composition-structure-property relationship of AsxTe100-x films prepared by plasma deposition[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 211-216(2018).

    [63] Mochalov L, Logunov A, Vorotyntsev V. Structural and optical properties of As-Se-Te chalcogenide films prepared by plasma-enhanced chemical vapor deposition[J]. Materials Research Express, 6, 056407(2019).

    [64] Saito Y, Morota M, Makino K et al. Recent developments concerning the sputter growth of chalcogenide-based layered phase-change materials[J]. Materials Science in Semiconductor Processing, 135, 106079(2021).

    [65] Bulai G, Pompilian O, Gurlui S et al. Ge-Sb-Te chalcogenide thin films deposited by nanosecond, picosecond, and femtosecond laser ablation[J]. Nanomaterials, 9, 676(2019).

    [66] Kim D G, Han S, Hwang J et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor[J]. Nature Communications, 11, 5933(2020).

    [68] Mochalov L, Dorosz D, Kudryashov M et al. Infrared and Raman spectroscopy study of As-S chalcogenide films prepared by plasma-enhanced chemical vapor deposition[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 258-263(2018).

    [69] Balan V, Vigreux C, Pradel A. Chalcogenide thin films deposited by radio-frequency sputtering[J]. Journal of Optoelectronics and Advanced Materials, 6, 875-882(2004).

    [70] Kohoutek T, Wagner T, Frumar M et al. Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films[J]. Journal of Applied Physics, 103, 063511(2008).

    [71] Hô N, Phillips M C, Qiao H et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared[J]. Optics Letters, 31, 1860-1862(2006).

    [72] Fick J, Nicolas B, Rivero C et al. Thermally activated silver diffusion in chalcogenide thin films[J]. Thin Solid Films, 418, 215-221(2002).

    [73] Bryce R M, Nguyen H T, Nakeeran P et al. Direct UV patterning of waveguide devices in As2Se3 thin films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22, 1044-1047(2004).

    [74] Huang C C, Hewak D W. Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process[J]. Thin Solid Films, 500, 247-251(2006).

    [75] Han T, Madden S, Bulla D et al. Low loss chalcogenide glass waveguides by thermal nano-imprint lithography[J]. Optics Express, 18, 19286-19291(2010).

    [76] Han T, Madden S, Debbarma S et al. Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating[J]. Optics Express, 19, 25447-25453(2011).

    [77] Abdel-Moneim N S, Mellor C J, Benson T M et al. Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip[J]. Optical and Quantum Electronics, 47, 351-361(2015).

    [78] Zou Y, Lin H T, Li L et al. Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators on nonconventional plastic substrates[C], 66-67(2013).

    [79] Viens J F, Meneghini C, Villeneuve A et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses[J]. Journal of Lightwave Technology, 17, 1184-1191(1999).

    [80] Hu J J, Tarasov V, Carlie N et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides[J]. Optics Express, 15, 11798-11807(2007).

    [81] Hu J J, Carlie N, Petit L et al. Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis[J]. Journal of Lightwave Technology, 27, 5240-5245(2009).

    [82] Hu J J, Feng N N, Carlie N et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow[J]. Optics Express, 18, 1469-1478(2010).

    [83] Lin H T, Li L, Zou Y et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators[J]. Optics Letters, 38, 1470-1472(2013).

    [84] Choi D Y, Madden S, Rode A et al. Dry etching characteristics of amorphous As2S3 film in CHF3 plasma[J]. Journal of Applied Physics, 104, 113305(2008).

    [85] Chen J Y, Zhou Q, Wang Y et al. Characterization of optical waveguide in chalcogenide glass formed by helium ion implantation[J]. Indian Journal of Physics, 95, 1239-1243(2021).

    [86] Ponnampalam N, Decorby R, Nguyen H et al. Small core rib waveguides with embedded gratings in As2Se3 glass[J]. Optics Express, 12, 6270-6277(2004).

    [87] Zhai Y F, Qi R D, Yuan C Z et al. High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling[J]. Applied Physics Express, 9, 052201(2016).

    [88] Jean P, Douaud A, Michaud-Belleau V et al. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides[J]. Optics Letters, 45, 2830-2833(2020).

    [89] Hu J J, Tarasov V, Agarwal A et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor[J]. Optics Express, 15, 2307-2314(2007).

    [90] Jian J L, Ye Y T, Li J Y et al. Recent progress of micro/nano photonic devices based on chalcogenide glasses[J]. Journal of the Chinese Ceramic Society, 49, 2676-2690(2021).

    [91] Hu J J, Tarasov V, Carlie N et al. Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films[J]. Optical Materials, 30, 1560-1566(2008).

    [92] Chiles J, Malinowski M, Rao A et al. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching[J]. Applied Physics Letters, 106, 111110(2015).

    [93] Du Q Y, Huang Y Z, Li J Y et al. Low-loss photonic device in Ge-Sb-S chalcogenide glass[J]. Optics Letters, 41, 3090-3093(2016).

    [94] Ruan Y L, Li W T, Jarvis R et al. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching[J]. Optics Express, 12, 5140-5145(2004).

    [95] Madden S J, Choi D Y, Bulla D A et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration[J]. Optics Express, 15, 14414-14421(2007).

    [96] Serna S, Lin H T, Alonso-Ramos C et al. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides[J]. Photonics Research, 6, 69-74(2018).

    [97] Zhu Y, Wan L, Chen Z S et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators[J]. Journal of Lightwave Technology, 38, 4817-4823(2020).

    [98] Zhang R Z, Yang Z, Zhao M Y et al. High quality, high index-contrast chalcogenide microdisk resonators[J]. Optics Express, 29, 17775-17783(2021).

    [99] Yang Z, Zhang R Z, Wang Z Y et al. High-Q, submicron-confined chalcogenide microring resonators[J]. Optics Express, 29, 33225-33233(2021).

    [100] Jean P, Douaud A, LaRochelle S et al. Hybrid integration of high-Q chalcogenide microring resonators on silicon-on-insulator[C], STh3O.3(2020).

    [101] Yu Y, Gai X, Ma P et al. Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016).

    [102] Lin H T, Xiang Y, Li L et al. High-Q mid-infrared chalcogenide glass resonators for chemical sensing[C], 61-62(2014).

    [103] Ma P, Choi D Y, Yu Y et al. Low-loss chalcogenide waveguides for biosensing in the mid-infrared[C], 59-60(2014).

    [104] Shen W H, Zeng P Y, Yang Z L et al. Chalcogenide glass photonic integration for improved 2  μm optical interconnection[J]. Photonics Research, 8, 1484-1490(2020).

    [105] Jin T N, Zhou J C, Lin H Y G et al. Mid-infrared chalcogenide waveguides for real-time and nondestructive volatile organic compound detection[J]. Analytical Chemistry, 91, 817-822(2019).

    [106] Li L, Lin H T, Qiao S T et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 8, 643-649(2014).

    [107] Zhou J, Du Q Y, Xu P P et al. Large nonlinearity and low loss Ge-Sb-Se glass photonic devices in near-infrared[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 6101306(2018).

    [108] Du Q Y, Wang C T, Zhang Y F et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 5, 5010-5016(2018).

    [109] Zhou C F, Zhang X L, Luo Y et al. Narrow-bandwidth Bragg grating filter based on Ge-Sb-Se chalcogenide glasses[J]. Optics Express, 30, 12228-12236(2022).

    [110] Yang Z, Wang Y F, Jin H M et al. Review of chalcogenide glass integrated photonic devices(Invited)[J]. Infrared and Laser Engineering, 51, 20220152(2022).

    [111] Xia L P, Liu Y H, Zhou P J et al. Advances in mid-infrared integrated photonic sensing system(Invited)[J]. Infrared and Laser Engineering, 51, 20220104(2022).

    [112] Su P, Han Z, Kita D et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector[J]. Applied Physics Letters, 114, 051103(2019).

    [113] Yu Y, Gai X, Ma P et al. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide[J]. Laser & Photonics Reviews, 8, 792-798(2014).

    [114] Ma P, Choi D Y, Yu Y et al. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing[J]. Optics Express, 23, 19969-19979(2015).

    [115] Lin H T, Song Y, Huang Y Z et al. Chalcogenide glass-on-graphene photonics[J]. Nature Photonics, 11, 798-805(2017).

    [116] Singh R, Su P, Kimerling L et al. Towards on-chip mid infrared photonic aerosol spectroscopy[J]. Applied Physics Letters, 113, 231107(2018).

    [117] Gutierrez-Arroyo A, Baudet E, Bodiou L et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared[J]. Optics Express, 24, 23109-23117(2016).

    [118] Rios C, Hosseini P, Wright C D et al. On-chip photonic memory elements employing phase-change materials[J]. Advanced Materials, 26, 1372-1377(2014).

    [119] Zheng J J, Khanolkar A, Xu P P et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform[J]. Optical Materials Express, 8, 1551-1561(2018).

    [120] de Leonardis F, Soref R, Passaro V M N et al. Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material[J]. Journal of Lightwave Technology, 37, 3183-3191(2019).

    [121] Xu P P, Zheng J J, Doylend J K et al. Low-loss and broadband nonvolatile phase-change directional coupler switches[J]. ACS Photonics, 6, 553-557(2019).

    [122] Zhang Q H, Zhang Y F, Li J Y et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit[J]. Optics Letters, 43, 94-97(2018).

    [123] Zhang Y F, Chou J B, Li J Y et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nature Communications, 10, 4279(2019).

    [124] Zhang Y F, Fowler C, Liang J H et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 16, 661-666(2021).

    [125] Zhu D F, Wang X Y, Li J et al. Design of nonvolatile and efficient polarization-rotating optical switch with phase change material[J]. Optics & Laser Technology, 151, 108065(2022).

    [126] Pernice W H P, Bhaskaran H. Photonic non-volatile memories using phase change materials[J]. Applied Physics Letters, 101, 171101(2012).

    [127] Ríos C, Stegmaier M, Hosseini P et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 9, 725-732(2015).

    [128] Ríos C, Youngblood N, Cheng Z G et al. In-memory computing on a photonic platform[J]. Science Advances, 5, eaau5759(2019).

    [129] Zhang B, Sun Y D, Xu Y et al. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide[J]. Optics Letters, 46, 2828-2831(2021).

    [130] Knotek P, Tichy L, Arsova D et al. Irreversible photobleaching, photorefraction and photoexpansion in GeS2 amorphous film[J]. Materials Chemistry and Physics, 119, 315-318(2010).

    [131] Kawaguchi T, Maruno S, Masui K J. Photobleaching and thermal-bleaching effects in amorphous Ge-S films[J]. Journal of Non-Crystalline Solids, 97/98, 1219-1222(1987).

    [132] Zoubir A, Richardson M, Rivero C et al. Direct femtosecond laser writing of waveguides in As2S3 thin films[J]. Optics Letters, 29, 748-750(2004).

    [133] Levy S, Klebanov M, Zadok A. High-Q ring resonators directly written in As2S3 chalcogenide glass films[J]. Photonics Research, 3, 63-67(2015).

    [134] Baker N J, Lee H W, Littler I C et al. Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides[J]. Optics Express, 14, 9451-9459(2006).

    [135] Hu J J, Torregiani M, Morichetti F et al. Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength[J]. Optics Letters, 35, 874-876(2010).

    [136] Shen B, Lin H T, Azadeh S S et al. Reconfigurable frequency-selective resonance splitting in chalcogenide microring resonators[J]. ACS Photonics, 7, 499-511(2020).

    [137] Zhu J G, Horning T M, Zohrabi M et al. Photo-induced writing and erasing of gratings in As2S3 chalcogenide microresonators[J]. Optica, 7, 1645-1648(2020).

    [138] Youden K E, Grevatt T, Eason R W et al. Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides[J]. Applied Physics Letters, 63, 1601-1603(1993).

    [139] Rao A, Patil A, Chiles J et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 23, 22746-22752(2015).

    [140] Xia X, Chen Q, Tsay C et al. Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared[J]. Optics Letters, 35, 3228-3230(2010).

    [141] Macik D D, Madsen C K. Fabrication of LiNbO3-As2S3 waveguides for beam steering applications[J]. Proceedings of SPIE, 9970, 99700H(2016).

    [142] Zhang C, Madsen C K. Demonstration of an As2S3 grating coupler on thin film LiNbO3[J]. Optics and Photonics Journal, 8, 111-121(2018).

    [143] Khan M S I, Mahmoud A, Cai L T et al. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach-Zehnder acoustooptic modulator on lithium niobate[J]. Journal of Lightwave Technology, 38, 2053-2059(2020).

    [144] Wan L, Yang Z Q, Zhou W F et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides[J]. Light: Science & Applications, 11, 145(2022).

    [145] Pi M Q, Zheng C T, Zhao H et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy[J]. Optics Letters, 46, 4797-4800(2021).

    [146] Ríos C, Zhang Y F, Shalaginov M Y et al. Multi-level electro-thermal switching of optical phase-change materials using graphene[J]. Advanced Photonics Research, 2, 2000034(2021).

    [147] Deckoff-Jones S, Lin H T, Kita D et al. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors[J]. Journal of Optics, 20, 044004(2018).

    [148] Deckoff-Jones S, Wang Y X, Lin H T et al. Tellurene: a multifunctional material for midinfrared optoelectronics[J]. ACS Photonics, 6, 1632-1638(2019).

    [149] Eggleton B J, Vo T D, Pant R et al. Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides[J]. Laser & Photonics Reviews, 6, 97-114(2012).

    [150] Lamont M R, Luther-Davies B, Choi D Y et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ= 10/W/m) As2S3 chalcogenide planar waveguide[J]. Optics Express, 16, 14938-14944(2008).

    [151] Ta′eed V G, Shokooh-Saremi M, Fu L B et al. Integrated all-optical pulse regenerator in chalcogenide waveguides[J]. Optics Letters, 30, 2900-2902(2005).

    [152] Ta′eed V, Pelusi M D, Eggleton B J et al. Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides[J]. Optics Express, 15, 15047-15052(2007).

    [153] Lamont M R, de Sterke C M, Eggleton B J. Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion[J]. Optics Express, 15, 9458-9463(2007).

    [154] Vo T D, Hu H, Galili M et al. Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal[J]. Optics Express, 18, 17252-17261(2010).

    [155] Zeng P Y, Xia D, Yang Z L et al. High-Q Ge-As-S microring resonators based on improved fabrication process for optical parametric amplifier[C](2020).

    [156] Shang H Y, Sun D D, Zhang M J et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide[J]. Journal of Lightwave Technology, 39, 3890-3895(2021).

    [157] Xia D, Huang Y F, Zhang B et al. On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides[J]. Frontiers in Physics, 9, 598091(2021).

    [158] Jiang W C, Li K M, Gai X et al. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators[J]. Optics Letters, 46, 2912-2915(2021).

    [159] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).

    [160] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [161] Xia D, Zeng P Y, Yang Z L et al. Kerr frequency comb generation in photonic integrated Ge-As-S chalcogenide microresonators[C], SW4J.2(2020).

    [162] Xia D, Yang Z L, Zeng P Y et al. Integrated Ge-Sb-S chalcogenide microresonator on chip for nonlinear photonics[C], C3C_1(2020).

    [163] Pant R, Poulton C G, Choi D Y et al. On-chip stimulated Brillouin scattering[J]. Optics Express, 19, 8285-8290(2011).

    [164] Choudhary A, Morrison B, Aryanfar I et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain[J]. Journal of Lightwave Technology, 35, 846-854(2017).

    [165] Morrison B, Casas-Bedoya A, Ren G H et al. Compact Brillouin devices through hybrid integration on silicon[J]. Optica, 4, 847-854(2017).

    [166] Liu Y, Choudhary A, Ren G H et al. Circulator‐free Brillouin photonic planar circuit[J]. Laser & Photonics Reviews, 15, 2000481(2021).

    [167] Lai C K, Choi D Y, Athanasios N J et al. Hybrid chalcogenide-germanosilicate waveguides for high performance stimulated Brillouin scattering applications[J]. Advanced Functional Materials, 32, 2105230(2022).

    [168] Song J C, Guo X J, Peng W T et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides[J]. Journal of Lightwave Technology, 39, 5048-5053(2021).

    [169] Song J C, Feng T H, Wei Y H et al. On-chip stimulated Brillouin scattering in As2S3 waveguides with soft claddings of Benzocyclobutene[J]. Optics Communications, 509, 127879(2022).

    [170] Pant R, Byrnes A, Poulton C G et al. Photonic chip based tunable slow and fast light via stimulated Brillouin scattering[J]. Optics Letters, 37, 969-971(2012).

    [171] Byrnes A, Pant R, Li E B et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 20, 18836-18845(2012).

    [172] Marpaung D, Pagani M, Morrison B et al. Nonlinear integrated microwave photonics[J]. Journal of Lightwave Technology, 32, 3421-3427(2014).

    [173] Marpaung D, Morrison B, Pagani M et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).

    [174] Choudhary A, Aryanfar I, Shahnia S et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters[J]. Optics Letters, 41, 436-439(2016).

    [175] Merklein M, Stiller B, Kabakova I V et al. Widely tunable, low phase noise microwave source based on a photonic chip[J]. Optics Letters, 41, 4633-4636(2016).

    [176] Jiang H Y, Marpaung D, Pagani M et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 3, 30-34(2016).

    [177] Zarifi A, Stiller B, Merklein M et al. Highly localized distributed Brillouin scattering response in a photonic integrated circuit[J]. APL Photonics, 3, 036101(2018).

    [178] Zarifi A, Stiller B, Merklein M et al. Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations[J]. Optics Letters, 43, 3493-3496(2018).

    [179] Merklein M, Stiller B, Vu K et al. A chip-integrated coherent photonic-phononic memory[J]. Nature Communications, 8, 574(2017).

    [180] Vanier F, Peter Y A, Rochette M. Cascaded Raman lasing in packaged high quality As2S3 microspheres[J]. Optics Express, 22, 28731-28739(2014).

    [181] Andrianov A V, Anashkina E A. Tunable Raman lasing in an As2S3 chalcogenide glass microsphere[J]. Optics Express, 29, 5580-5587(2021).

    [182] Li Z, Du Q Y, Wang C P et al. Externally pumped photonic chip-based ultrafast Raman soliton source[J]. Laser & Photonics Reviews, 15, 2000301(2021).

    Tools

    Get Citation

    Copy Citation Text

    Bin Zhang, Zhaohui Li. Integrated Chalcogenide Photonics[J]. Acta Optica Sinica, 2022, 42(23): 2313001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: May. 12, 2022

    Accepted: Jun. 7, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Zhang Bin (zhangbin5@mail.sysu.edu.cn)

    DOI:10.3788/AOS202242.2313001

    Topics