Acta Optica Sinica, Volume. 42, Issue 23, 2313001(2022)

Integrated Chalcogenide Photonics

Bin Zhang1,2、* and Zhaohui Li1,2,3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, Guangdong , China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, Guangdong , China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, Guangdong , China
  • show less
    Figures & Tables(20)
    Infrared transmission window of some materials[25-29]
    Surface topographies of ChG films deposited by different methods. (a) AFM image of GeAsSe films deposited by magnetron sputtering[69]; (b) optical microscopy image of Ge2Sb2Te5 thin film deposited by fs-PLD[65]; (c) AFM image of As33S67 film fabricated by sol-gel process[70]; (d) As2S3 films deposited on SiO2 microdisks by thermal evaporation[66]; (e) 4 inch Ge25Sb10S65 film fabricated by thermal evaporation[67]; (f) As55S45 film fabricated by PECVD[68]
    Morphology images of ChG waveguides obtained by different waveguide fabrication methods. (a) SEM images of Ge22As20Se58 waveguide fabricated by direct laser writing[71]; (b) schematic of 80GeS2-15Ga2S3-5Sb2S3 waveguide fabricated by He+ ions implanting[85]; (c) SEM images of As2S3 waveguide fabricated by thermal printing[76]; (d) SEM image of As2Se3 waveguide fabricated by wet-etching[86]; (e) AFM image of Ge23Sb7S70 waveguide fabricated by lift-off [80]
    Morphology images of ChG waveguides fabricated by dry-etching method. (a) Schematic of As2S3 waveguide pre-patterned and redeposited on SiO2 substrate[66]; (b) SEM image of Ge23Sb7S70 waveguide prepared with SF6 as etching gas[91]; (c) SEM image of Ge23Sb7S70 waveguide prepared with chlorine as etching gas[92]; (d) SEM image of Ge23Sb7S70 waveguide prepared with CHF3/CF4 as etching gas[93]; (e) SEM image of As2S3 waveguide prepared with CF4/O2 as etching gas[94]; (f) SEM images of Ge25Sb10S65 waveguide sidewall prepared with and without optimized parameters of Ar/CHF3/CF4/O2[53]
    Applications of integrated ChG devices in ultrabroad wavelength regions. (a) Narrow bandwidth Bragg grating filter based on chalcogenide glass in 1.55 μm band[109]; (b) graphene waveguide integrated detector in 2 μm band[115]; (c) schematic of photon aerosol spectrometer module in 3 μm band[116]; (d) schematic of hybrid integrated detector based on spiral chalcogenide waveguide and PbTe film directly integrated under chalcogenide waveguide[112]; (e) cross-section structure and (f) transmission spectrum of As2Se3 waveguides in mid-infrared band[83]; (g) optical microscope image of spiral single-mode ChG waveguide detector and (h) absorption spectra of methane and nitrous oxide based on device in 7-9 μm wavelength region[117]
    Applications of ChG phase change material-based photonic integrated devices. (a) Optical switch based on Si3N4 microresonator and GST[118]; (b) 1×2 and 2×2 phase change material-based optical switchs[122]; (c) GSST based polarization rotary optical switch[125]; (d) working principle and multi-level signal processing of all-optical on-chip memory device[127]; (e) GST based photonic memory cell and photonic structure of matrix-vector multiplication[128]; (f) photonic tensor cores for convolution operations[8]; (g) optical switches based on symmetric and asymmetric microring resonators[129]
    Results of ChG optical waveguides fabricated by laser direct writing method[132]. Optical microscope images of (a) unexposed area, (b) single straight waveguide, and (c) Y-coupler on ChG film; (d) top view of microring resonator obtained by optical microscope[133]; (e) fabrication schematic of optical Bragg grating through interference caused by dislocation of shadow masks[134]
    Results of mode splitting caused by photorefractive in ChG microresonators[136]. (a) Optical microscope image of ChG microresonator; (b) schematic of Bragg grating in ChG microresonator; (c) pattern splitting results caused by different irradiation time; (d) variation curves of mode splitting width Δλsplit and corresponding Bragg grating reflectivity rB with exposure time; (e) reflection spectra of "writing" and "erasing" selected mode in As2S3 microcavity based on photoinduced refractive index variation[137] (upper image is reflection spectrum including three modes, lower left image is reflection spectrum of three modes after erasing mode 2, lower middle image is local reflection spectrum before erasing mode 2, and lower right image is local reflection spectrum after erasing mode 2)
    Hybrid integrated ChG-based devices. (a) ChG and lithium niobate hybrid integrated microring modulator and MZI modulator[139]; (b) As2S3 vertically integrated optical phased array on lithium niobate substrate[141]; (c) acoustooptic modulator with lithium niobate/GeSbS hybrid integrated MZI structure[144]; (d) GeSbSe waveguide integrated black phosphorus photodetector[147]; (e) hybrid integrated photodetector based on ChG waveguide and tellurene[148]
    ChG waveguides and systems for all-optical signal processing[154]. (a) Cross section of As2S3 planar waveguide; (b) simulated group velocity dispersion of TE and TM modes and material dispersion of on-chip waveguide; (c) principle diagrams of transmitter optimization of Tbit/s bandwidth signal and demultiplexing time division multiplexing signal receiver system
    Results of ChG integrated microresonators in optical parametric oscillation applications. (a) Optical parametric oscillation based on As2S3 microring resonators[30];(b) measured threshold power of optical parametric oscillation process (about 5.4 mW)[30]; (c) four-wave mixing effect based on Ge11.5As24Se64.5 microring resonators[158]; (d) measured conversion efficiency of four wave mixing as a function of input pump power[158]
    Results of ChG integrated microresonators in optical frequency comb applications[53,67]. (a) SEM of GeSbS microresonator;(b) bright soliton microcomb; (c) dark-pulse microcomb; (d) Raman-Kerr microcomb
    Results of ChG integrated waveguides in SBS applications. (a) SEM of As2S3 rib waveguide; (b) 52 dB Brillouin on-off gain spectrum of As2S3 rib waveguide[164]; (c)(d) As2S3-silicon hybrid integrated waveguide and its Brillouin gain spectrum[165]; (e)(f) As2S3-Ge∶SiO2 hybrid integrated waveguides and its Brillouin gain spectrum[167]; (g)(h) Ge25Sb10S65 waveguides and its Brillouin gain spectrum[168]; (i)(j) As2S3 waveguides with BCB cladding and its Brillouin gain spectrum[169]
    Applications of SBS in ChG integrated chips. (a) Microwave photonics filters[171-174]; (b) low-noise microwave source[175]; (c) microwave measurement[176]; (d) narrow linewidth on-chip Brillouin laser[66,165] ; (e) high spatial resolution sensing[177]; (f) photonic memory[179]
    Large bandwidth tunable ChG-based integrated Raman laser[53]. (a) SEM of GeSbS microresonator; (b) Raman laser spectrum; (c) output power of the first-order Raman laser as a function of pump power; (d)(e) discrete tuning of the first Stokes output spectrum and discrete tuning of power; (f) discrete tuning of second-order Stokes output spectrum; (g) continuous tuning of Raman laser at different temperatures
    Integrated Raman soliton laser based on ChG waveguides[182]. (a) Optical microscope image and SEM image of fabricated device with varying waveguide width between 800 and 1000 nm; (b) diagram of experimental setup; (c) measured optical spectra of Raman solitons; (d) Raman soliton spectrum under 7.73 pJ pulse energy; (e) Raman soliton pulse train; (f) autocorrelation trace of Raman soliton single pulse; (g) frequency domain analysis of Raman soliton
    • Table 1. Nonlinear optical parameters of some materials at 1.55 μm

      View table

      Table 1. Nonlinear optical parameters of some materials at 1.55 μm

      MaterialGeometryn2 /(10-18 m2·W-1Loss /(dB·cm-1Qint /106TPA /(m·W-1
      As2S330Waveguide30.1Negligible
      Ge11.5As24Se64.531Waveguide8.62.610-13
      Ge22Sb18Se6032Waveguide5.144×10-13
      Si33Waveguide645×10-12
      AlGaAs34-36Waveguide14.33.25×10-12
      LiNbO337Microring0.18~4Negligible
      SiC38Microdisk0.87.1Negligible
      Si3N439-40Microring0.25422Negligible
      AlN41Microring~0.351.1Negligible
      GaN42Microring1.40.241.8Negligible
      GaP43Microring111.22Negligible
    • Table 2. Parameters of chalcogenide optical waveguide and microresonator at 1.55 µm

      View table

      Table 2. Parameters of chalcogenide optical waveguide and microresonator at 1.55 µm

      Material

      type

      Fabrication

      method

      Refractive indexDimensionLoss or Q factor

      Ge23Sb7S70

      waveguide96

      TE

      RIE

      2.18

      0.8 μm(width)×

      0.42 μm(height)

      0.5 dB·cm-1

      Ge23Sb7S70

      microdisk93

      TE

      RIE

      2.220.8 μm×0.45 μm1.2×106
      Ge11.5As24Se64.5 nanowires31

      TE

      ICP(inductive coupled plasma)-RIE

      2.660.63 μm×0.5 μm2.6 dB·cm-1

      Ge11.5As24Se64.5

      microdisk97

      TE

      RIE

      2.5451 μm height1.1×106

      Ge25Sb10S65

      microring67

      TE

      ICP-RIE

      2.22.4 μm×0.8 μm1.3×106

      Ge28Sb12Se60

      microdisk98

      TE

      ICP

      2.81 μm height5 ×105

      Ge28Sb12Se60

      microring99

      TE

      ICP

      2.80.3 μm height4.1 ×105

      As20S80

      resonator88

      Micro-trench

      EBE(electron beam evaporator)

      2.16582.0 μm×1.5 μm6×105

      As2S3

      resonator66

      Trapezoidal-

      TE

      2.4310 µm×1.3 µm1.44×107

      As2S3

      microring100

      Micro-trench

      TE

      2.452.5 μm×1.4 µm4.6×105
    • Table 3. Parameters of chalcogenide optical waveguide and microresonator in mid-infrared band

      View table

      Table 3. Parameters of chalcogenide optical waveguide and microresonator in mid-infrared band

      Wavelength /μm

      Material

      type

      Fabrication

      method

      Refractive indexDimensionLoss or Q factor
      3.8-5

      Ge11.5As24Se64.5

      waveguide101

      TE

      ICP

      4.0 μm(width)×4.4 μm(height)~0.6 dB·cm-1
      5.2

      Ge23Sb7S70

      microdisk102

      TE

      Lift-off

      ~2.13 µm×1.3 µm4×105
      2.5-6.6

      Ge11.5As24Se64.5

      waveguide103

      TE

      ICP

      2.6094 µm×1.25 µm~0.5 dB·cm-1
      2

      As2S3

      waveguide104

      TE

      ICP

      2.421.2 μm×0.6 µm1.45 dB·cm-1
      5.2

      As2S3

      microdisk83

      TE

      Lift-off

      2.662.5 μm×1.1 μm2×105
      2.4

      As2Se3

      waveguide105

      Sputtering

      Lift-off

      2.7910 μm×1 μm0.16 dB·cm-1
      8.4

      As2Se3

      waveguide71

      TE

      Wet etching

      2.785.4 μm×4.53 μm0.5 dB·cm-1
    • Table 4. Comparison of Brillouin gain characteristics of integrated chalcogenide waveguides

      View table

      Table 4. Comparison of Brillouin gain characteristics of integrated chalcogenide waveguides

      MaterialLength /cm

      Loss /

      (dB·cm-1

      Brillouin

      frequency /GHz

      Gain,

      GB /(m-1·W-1

      Pump power /mWOn/off gain /dB
      As2S316370.47.7310.8730018.8
      As2S317070.47.7317.3930025.8
      As2S3164230.57.650035052
      As2S3-Si1655.80.77.675018022.5
      As2S3-Ge∶SiO2167230.57.8419158~23
      Ge25Sb10S6516870.27.44333820017.6
      aAs2S3-Si1660.817.585280100-
      As2S3-BCB1697.50.27.751711205.95
    Tools

    Get Citation

    Copy Citation Text

    Bin Zhang, Zhaohui Li. Integrated Chalcogenide Photonics[J]. Acta Optica Sinica, 2022, 42(23): 2313001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: May. 12, 2022

    Accepted: Jun. 7, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Zhang Bin (zhangbin5@mail.sysu.edu.cn)

    DOI:10.3788/AOS202242.2313001

    Topics