Journal of Synthetic Crystals, Volume. 53, Issue 10, 1675(2024)

Research Progress in Chemical Mechanical Polishing of Diamond

AN Kang1... XU Guangyu1, WU Haiping1, ZHANG Yachen1, ZHANG Yongkang1, LI Lijun1, LI Hong1, ZHANG Xufang2, LIU Fengbin1,* and LI Chengming3 |Show fewer author(s)
Author Affiliations
  • 1School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
  • 2School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • 3Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    References(73)

    [2] [2] KHABASHESKU V, FILONENKO V, BAGRAMOV R, et al. Nanoengineered polycrystalline diamond composites with advanced wear resistance and thermal stability[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59560-59566.

    [3] [3] WANG L, BAI G, LI N, et al. Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles[J]. Vacuum, 2022,202:111133.

    [4] [4] WILDI T, KISS M, QUACK N. Diffractive optical elements in single crystal diamond[J]. Optics Letters, 2020, 45(13): 3458.

    [5] [5] ZHUANG G L, ZONG W J, TANG Y F, et al. Crystal orientation and material type related suppression to the graphitization wear of micro diamond tool[J]. Diamond and Related Materials, 2022, 127: 109182.

    [6] [6] HAO X B, LIU B J, LI Y C, et al. Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices[J]. Diamond and Related Materials, 2023, 135: 109858.

    [8] [8] ROY S, BALLA V K, MALLIK A K, et al. A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond[J]. Materials Today: Proceedings, 2018, 5(3): 9846-9854.

    [9] [9] CHENG C Y, TSAI H Y, WU C H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond and Related Materials, 2005, 14(3): 622-625.

    [10] [10] LUO H, AJMAL K M, LIU W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021,3(2):22003.

    [11] [11] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7: 44462.

    [13] [13] LEE Y C, LIN S J, BUCK V, et al. Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique[J]. Diamond and Related Materials, 2008, 17(4): 446-450.

    [14] [14] MATSUMAE T, KURASHIMA Y, UMEZAWA H, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air[J]. Microelectronic Engineering, 2018, 195: 68-73.

    [16] [16] TANG C J, NEVES A J, FERNANDES A J S, et al. A new elegant technique for polishing CVD diamond films[J]. Diamond and Related Materials, 2003, 12(8): 1411-1416.

    [17] [17] WEIMA J A, VON BORANY J, GRTZSCHEL R, et al. Investigating contaminants on thermochemically refined surfaces of chemical vapor deposited diamond films[J]. Journal of the Electrochemical Society, 2002, 149(5): G301.

    [18] [18] ZONG W J, ZHANG J J, LIU Y, et al. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement[J]. Applied Surface Science, 2014, 316: 617-624.

    [19] [19] OZKAN A M, MALSHE A P, BROWN W D. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates[J]. Diamond and Related Materials, 1997, 6(12): 1789-1798.

    [20] [20] YOSHIDA A, DEGUCHI M, KITABATAKE M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 112: 248-251.

    [21] [21] GROGAN D F, ZHAO T, BOVARD B G, et al. Planarizing technique for ion-beam polishing of diamond films[J]. Applied Optics, 1992, 31(10): 1483-1487.

    [22] [22] DU C Y, DAI Y F, GUAN C L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753.

    [23] [23] LIU N, SUGAWARA K, YOSHITAKA N, et al. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate[J]. Scientific Reports, 2020, 10: 19432.

    [24] [24] LUO H, AJMAL K M, LIU W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma[J]. Carbon, 2021, 182: 175-184.

    [25] [25] HAISMA J, VAN DER KRUIS F J H M, SPIERINGS B A C M, et al. Damage-free tribochemical polishing of diamond at room temperature: a finishing technology[J]. Precision Engineering, 1992, 14(1): 20-27.

    [26] [26] HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1): 103-120.

    [27] [27] HARRIS D C. Materials for infrared windows and domes: properties and performance[Z]. Portland: Copyright Clearance Center, 2000: 24.

    [28] [28] ZHENG Y T, YE H T, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101: 107600.

    [29] [29] LIANG Y F, ZHENG Y T, WEI J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction[J]. Diamond and Related Materials, 2021, 117: 108461.

    [31] [31] KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101: 107644.

    [32] [32] AN K, LIU P, ZHANG Y K, et al. Prestressing method to inhibit crack initiation and expansion in a large-sized diamond film during polishing[J]. Diamond and Related Materials, 2024, 144: 111022.

    [35] [35] ZAITSEV A M, KOSACA G, RICHARZ B, et al. Thermochemical polishing of CVD diamond films[J]. Diamond and Related Materials, 1998, 7(8): 1108-1117.

    [37] [37] PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Materials Today: Proceedings, 2021, 40: 1-4.

    [38] [38] KOMLENOK M, PASHININ V, SEDOV V, et al. Femtosecond and nanosecond laser polishing of rough polycrystalline diamond[J]. Laser Physics, 2022, 32(8): 084003.

    [39] [39] NAGASE T, KATO H, PAHLOVY S A, et al. Nanosmoothing of single crystal diamond chips by 1 keV Ar+ ion bombardment[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 263-267.

    [40] [40] MI S C, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92: 248-252.

    [41] [41] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1): 353-356.

    [42] [42] ZHENG Y T, JIA Y W, LIU J L, et al. Surface etching evolution of mechanically polished single crystal diamond with subsurface cleavage in microwave hydrogen plasma: topography, state and electrical properties[J]. Vacuum, 2022, 199: 110932.

    [43] [43] XIAO C, HSIA F C, SUTTON-COOK A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes[J]. Carbon, 2022, 196: 29-48.

    [44] [44] THORNTON A G, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39):39-42.

    [45] [45] KHNLE J, WEIS O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science, 1995, 340: 16-22.

    [46] [46] OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090.

    [47] [47] WANG C Y, ZHANG F L, KUANG T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3[J]. Thin Solid Films, 2006, 496(2): 698-702.

    [48] [48] REN J, ZHANG K L, WANG F, et al. Investigation of diamond films polished by thermal chemical mechanical polishing[J]. ECS Transactions, 2013, 52(1): 517.

    [49] [49] YUAN Z W, ZHENG P, WEN Q, et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 1715-1727.

    [50] [50] YUAN Z W, JIN Z J, ZHANG Y J, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films[J]. Journal of Manufacturing Science and Engineering, 2013, 135(4): 041006.

    [51] [51] TOKUDA N, TAKEUCHI D, RI S G, et al. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions[J]. Diamond and Related Materials, 2009, 18: 213-215.

    [52] [52] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24: 59-62.

    [53] [53] KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diamond and Related Materials, 2015, 60: 75-80.

    [54] [54] KUBOTA A, MOTOYAMA S, TOUGE M. Surface smoothing of a polycrystalline diamond using an iron plate-H2O2 chemical reaction[J]. Diamond and Related Materials, 2016, 69: 96-101.

    [55] [55] YUAN S, GUO X G, LI M, et al. An insight into polishing slurry for high quality and efficiency polishing of diamond[J]. Tribology International, 2022, 174: 107789.

    [56] [56] KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials, 2016, 70: 39-45.

    [57] [57] YUAN S, GUO X G, HUANG J X, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100: 107528.

    [58] [58] GUO X G, YUAN S, WANG X L, et al. Atomistic mechanisms of chemical mechanical polishing of diamond (100) in aqueous H2O2/pure H2O: Molecular dynamics simulations using reactive force field (ReaxFF)[J]. Computational Materials Science, 2019, 157: 99-106.

    [59] [59] LIAO L X, LUO S M, CHANG X F, et al. Study on the mechanism of chemical mechanical polishing on high-quality surface of single crystal diamond[J]. Journal of Manufacturing Processes, 2023, 105: 386-398.

    [60] [60] ANAN S, TOUGE M, KUBOTA A, et al. Study on ultra precision polishing of single crystal diamond substrates under ultraviolet irradiation[J]. Key Engineering Materials, 2009, 407/408: 355-358.

    [61] [61] WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond and Related Materials, 2013, 39: 14-19.

    [62] [62] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275.

    [63] [63] YANG H P, JIN Z J, NIU L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond[J]. Diamond and Related Materials, 2022, 125: 108982.

    [64] [64] YANG H P, JIN Z J, NIU H, et al. A novel visible-light catalyzed assisted single crystal diamond chemical mechanical polishing slurry and polishing mechanism[J]. Materials Today Communications, 2022, 33: 104249.

    [66] [66] LIU W T, XIONG Q, LU J B, et al. Tribological behavior of single crystal diamond based on UV photocatalytic reaction[J]. Tribology International, 2022, 175: 107806.

    [68] [68] SHAO J Y, ZHAO Y J, ZHU J H, et al. A new slurry for photocatalysis-assisted chemical mechanical polishing of monocrystal diamond[J]. Machines, 2023, 11(6): 664.

    [69] [69] HAN X S, HU Y Z, YU S Y. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method[J]. Applied Physics A, 2009, 95(3): 899-905.

    [70] [70] HARRISON J A, WHITE C T, COLTON R J, et al. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces[J]. Physical Review B, 1992, 46(15): 9700-9708.

    [71] [71] HARRISON J A, WHITE C T, COLTON R J, et al. Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces[J]. The Journal of Physical Chemistry, 1993, 97(25): 6573-6576.

    [72] [72] HARRISON J A, BRENNER D W. Simulated tribochemistry: an atomic-scale view of the wear of diamond[J]. Journal of the American Chemical Society, 1994, 116(23): 10399-10402.

    [73] [73] GAO G T, CANNARA R J, CARPICK R W, et al. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM[J]. Langmuir, 2007, 23(10): 5394-5405.

    [74] [74] YANG N, HUANG W, LEI D J. Control of nanoscale material removal in diamond polishing by using iron at low temperature[J]. Journal of Materials Processing Technology, 2020, 278: 116521.

    [75] [75] LIN Q, CHEN S L, JI Z, et al. High-temperature wear mechanism of diamond at the nanoscale: a reactive molecular dynamics study[J]. Applied Surface Science, 2022, 585: 152614.

    [76] [76] LIN J F, FANG T H, WU C D, et al. Nanotribological behavior of diamond surfaces using molecular dynamics with fractal theory and experiments[J]. Current Applied Physics, 2010, 10(1): 266-271.

    [77] [77] YANG N, ZONG W J, LI Z Q, et al. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction[J]. Computational Materials Science, 2014, 95: 551-556.

    [78] [78] LIU H Z, ZONG W J, CHENG X. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond[J]. Computational Materials Science, 2021, 186: 110069.

    [79] [79] SHI Z Y, JIN Z J, GUO X G, et al. Interfacial friction properties in diamond polishing process and its molecular dynamic analysis[J]. Diamond and Related Materials, 2019, 100: 107546.

    [80] [80] SHI Z Y, JIN Z J, GUO X G, et al. Insights into the atomistic behavior in diamond chemical mechanical polishing with OH environment using ReaxFF molecular dynamics simulation[J]. Computational Materials Science, 2019, 166: 136-142.

    [82] [82] YUAN S, GUO X G, LI P H, et al. Insights into the surface oxidation modification mechanism of nano-diamond: an atomistic understanding from ReaxFF simulations[J]. Applied Surface Science, 2021, 540: 148321.

    [83] [83] YUAN S, GUO X G, HUANG J X, et al. Insight into the mechanism of low friction and wear during the chemical mechanical polishing process of diamond: a reactive molecular dynamics simulation[J]. Tribology International, 2020, 148: 106308.

    [84] [84] YUAN S, GUO X G, MAO Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations[J]. International Journal of Mechanical Sciences, 2021, 191: 106096.

    Tools

    Get Citation

    Copy Citation Text

    AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond[J]. Journal of Synthetic Crystals, 2024, 53(10): 1675

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 8, 2024

    Accepted: Jan. 17, 2025

    Published Online: Jan. 17, 2025

    The Author Email: Fengbin LIU (fbliu@ncut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics