Acta Optica Sinica, Volume. 42, Issue 21, 2125001(2022)

Effect of Electrostatic Field Inversion in (101¯1)-Plane InGaN Quantum Wells on Photoelectric Properties of Blue Light-Emitting Diodes

Ruimei Yin1, Wei Jia1,2、*, Hailiang Dong1, Zhigang Jia1, Tianbao Li1, Chunyan Yu1, Zhuxia Zhang1, and Bingshe Xu1,2,3
Author Affiliations
  • 1Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 2Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, Shanxi , China
  • 3Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi′an710021, Shaanxi , China
  • show less
    References(33)

    [1] Li J M, Liu Z Q, Wei T B et al. Development summary of semiconductor lighting in China[J]. Acta Optica Sinica, 41, 0116002(2021).

    [2] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: challenges and countermeasures[J]. Laser & Photonics Reviews, 7, 408-421(2013).

    [3] Iveland J, Martinelli L, Peretti J et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop[J]. Physical Review Letters, 110, 177406(2013).

    [4] Kim M H, Schubert M F, Dai Q et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Applied Physics Letters, 91, 183507(2007).

    [5] Wang C H, Chang S P, Chang W T et al. Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells[J]. Applied Physics Letters, 97, 181101(2010).

    [6] Tian K K, Chu C S, Bi W G et al. Hole injection efficiency improvement for AlGaN-based deep ultraviolet light-emitting diodes[J]. Laser & Optoelectronics Progress, 56, 060001(2019).

    [7] Feezell D F, Speck J S, DenBaars S P et al. Semipolar (202¯1¯) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting[J]. Journal of Display Technology, 9, 190-198(2013).

    [8] Funato M, Ueda M, Kawakami Y et al. Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {112¯2} GaN bulk substrates[J]. Japanese Journal of Applied Physics, 45, L659-L662(2006).

    [9] Wu Z Y, Lu S Q, Yang P et al. Green-amber emission from high indium content InGaN quantum wells improved by interface modification of semipolar (1122) GaN templates[J]. CrystEngComm, 21, 244-250(2019).

    [10] Becerra D L, Zhao Y J, Oh S H et al. High-power low-droop violet semipolar (303¯1¯) InGaN/GaN light-emitting diodes with thick active layer design[J]. Applied Physics Letters, 105, 171106(2014).

    [11] Wang T. Topical review: development of overgrown semi-polar GaN for high efficiency green/yellow emission[J]. Semiconductor Science and Technology, 31, 093003(2016).

    [12] Zhao Y J, Fu H Q, Wang G T et al. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes[J]. Advances in Optics and Photonics, 10, 246-308(2018).

    [13] Chiu C H, Lin D W, Lin C C et al. Reduction of efficiency droop in Semipolar (1101) InGaN/GaN light emitting diodes grown on patterned silicon substrates[J]. Applied Physics Express, 4, 012105(2011).

    [14] Scholz F, Schwaiger S, Däubler J et al. Semipolar GaInN quantum well structures on large area substrates[J]. Physica Status Solidi (b), 249, 464-467(2012).

    [15] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 89, 5815-5875(2001).

    [16] Butté R, Grandjean N. Effects of polarization in optoelectronic quantum structures[M]. Wood C, Jena D. Polarization effects in semiconductors, 467-511(2008).

    [17] Takeuchi T, Amano H, Akasaki I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells[J]. Japanese Journal of Applied Physics, 39, 413-416(2000).

    [18] Cao W Y, Wang W Y. Research on spectral shift of InGaN/GaN multiple quantum well with strain modulation[J]. Laser & Optoelectronics Progress, 57, 152305(2020).

    [19] Monavarian M, Rashidi A, Feezell D. A decade of nonpolar and semipolar III-nitrides: a review of successes and challenges[J]. Physica Status Solidi (a), 216, 1800628(2019).

    [20] Jia T T, Dong H L, Jia Z G et al. Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode[J]. Infrared and Laser Engineering, 50, 20200489(2021).

    [21] Sun P, Dang S H, Li T B et al. Carrier transport improvement in blue InGaN light-emitting diodes via reduced polarization using a band-engineered electron blocking layer[J]. Journal of Display Technology, 10, 1101-1105(2014).

    [22] Dong H L, Jia T T, Liang J et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier[J]. Optics & Laser Technology, 129, 106309(2020).

    [23] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 80, 1204-1206(2002).

    [24] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 94, 3675-3696(2003).

    [25] Romanov A E, Baker T J, Nakamura S et al. Strain-induced polarization in wurtzite III-nitride semipolar layers[J]. Journal of Applied Physics, 100, 023522(2006).

    [26] Ji X L, Wei T B, Yang F H et al. Efficiency improvement by polarization-reversed electron blocking structure in GaN-based light-emitting diodes[J]. Optics Express, 22, A1001-A1008(2014).

    [27] Mondal R K, Chatterjee V, Pal S. AlInGaN-based superlattice p-region for improvement of performance of deep UV LEDs[J]. Optical Materials, 104, 109846(2020).

    [28] Shih Y H, Chang J Y, Sheu J K et al. Design of hole-blocking and electron-blocking layers in AlxGa1-xN-based UV light-emitting diodes[J]. IEEE Transactions on Electron Devices, 63, 1141-1147(2016).

    [29] Zhao Y B, Qian C C. Effect of carrier recombination mechanism on modulation bandwidth of InGaN-based LEDs with different emission wavelengths[J]. Laser & Optoelectronics Progress, 58, 2123001(2021).

    [30] Karpov S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review[J]. Optical and Quantum Electronics, 47, 1293-1303(2015).

    [31] Dai Q, Shan Q F, Cho J et al. On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms[J]. Applied Physics Letters, 98, 033506(2011).

    [32] Ryou J H, Yoder P D, Liu J P et al. Control of quantum-confined stark effect in InGaN-based quantum wells[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 1080-1091(2009).

    [33] Monavarian M, Rashidi A, Aragon A et al. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients[J]. Optics Express, 25, 19343-19353(2017).

    Tools

    Get Citation

    Copy Citation Text

    Ruimei Yin, Wei Jia, Hailiang Dong, Zhigang Jia, Tianbao Li, Chunyan Yu, Zhuxia Zhang, Bingshe Xu. Effect of Electrostatic Field Inversion in (101¯1)-Plane InGaN Quantum Wells on Photoelectric Properties of Blue Light-Emitting Diodes[J]. Acta Optica Sinica, 2022, 42(21): 2125001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Mar. 16, 2022

    Accepted: May. 23, 2022

    Published Online: Nov. 4, 2022

    The Author Email: Jia Wei (jiawei@tyut.edu.cn)

    DOI:10.3788/AOS202242.2125001

    Topics