Journal of Electronic Science and Technology, Volume. 22, Issue 3, 100261(2024)
Numerical design of an efficient Ho3+-doped InF3 fiber laser at ~3.2 μm
[4] [4] L.P. Pleau, V. Ftin, F. Maes, R. Vallée, M. Bernier, Tunable allfiber laser f remote sensing of methane near 3.4 μm, in: Proc. of Conf. on Lasers ElectroOptics Europe & European Quantum Electronics Conf., Munich, Germany, 2019, p. 1.
[6] Woodward R.I., Majewski M.R., Hudson D.D., Jackson S.D.. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics, 4, 020801:1-10(2019).
[7] [7] Y.N. Yusef, D.V. Petrachkov, E.N. Kobov, et al., An ex vivo study of the impact of infrared laser on ocular tissues, in: Proc. of 2022 Intl. Conf. Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2022, p. 1.
[9] Yue W.-J., Zhang Y.-C., Shi L.-B. et al. Porcine skin ablation using mid-infrared picosecond pulse burst. Results in Optics, 9, 100309:1-7(2022).
[11] [11] V. Ftin, M. Bernier, S.T. Bah, R. Vallée, 30 W fluide glass allfiber laser at 2.94 μm, Opt. Lett. 40 (12) (Jun. 2015) 2882–2885.
[16] [16] M. LemieuxTanguay, V. Ftin, T. Boilard, et al., 15 W monolithic fiber laser at 3.55 µm, Opt. Lett. 47 (2) (Jan. 2022) 289–292.
[19] [19] V. Ftin, F. Jobin, M. Larose, M. Bernier, R. Vallée, 10Wlevel monolithic dysprosiumdoped fiber laser at 3.24 μm, Opt. Lett. 44 (3) (Feb. 2019) 491–494.
[22] [22] O. HendersonSapir, A. Malouf, N. Bawden, J. Munch, S.D. Jackson, D.J. Ottaway, Recent advances in 3.5 μm erbiumdoped infrared fiber lasers, IEEE J. Sel. Top. Quant. 23 (3) (MayJun. 2017) 0900509:1–9.
[28] [28] F. Röser, C. Jauregui, J. Limpert, A. Tünnermann, 94 W 980 nm high brightness Ybdoped fiber laser, Opt. Express 16 (22) (Oct. 2008) 17310–17318.
[31] [31] D. Marcuse, Loss analysis of singlemode fiber splices, The Bell System Technical Journal 56 (5) (MayJun. 1977) 703–718.
[34] Piatkowski D., Wisniewski K., Rozanski M. et al. Excited state absorption spectroscopy of ZBLAN: Ho3+ glass—experiment and simulation. J. Phys.-Condens. Mat., 20, 155201:1-11(2008).
[36] Osiac E., Sokólska I., Kück S.. Upconversion-induced blue. green and red emission in Ho3+:BaY2F8, J. Alloy Compd., 323–324, 283-287(2001).
[38] Gomes L., Librantz A.F.H., Jagosich F.H., Alves W.A.L., Ranieri I.M., Baldochi S.L.. Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal. J. Appl. Phys., 106, 103508:1-9(2009).
[41] [41] M. Pollnan, S.D. Jackson, Erbium 3 μm fiber lasers, IEEE J. Sel. Top. Quant. 7 (1) (Jan.Feb. 2001) 30–40.
[42] [42] F. Maes, C. Stihler, L.P. Pleau, et al., 3.42 μm lasing in heavilyerbiumdoped fluide fibers, Opt. Express 27 (3) (Feb. 2019) 2170–2183.
[43] [43] F. Maes, V. Ftin, M. Bernier, R. Vallée, 5.6 W monolithic fiber laser at 3.55 μm, Opt. Lett. 42 (11) (Jun. 2017) 2054–2057.
[44] Maes F., Fortin V., Bernier M., Vallée R.. Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers. IEEE J. Quantum Elect., 53, 1600208:1-8(2017).
[45] [45] H.H.P.T. Bekman, J.C. Van Den Heuvel, F.J.M. Van Putten, R. Schleijpen, Development of a infrared laser f study of infrared countermeasures techniques, in: Proc. of SPIE 5615, Technologies f Optical Countermeasures, London, UK, 2004, pp. 27–38.
Get Citation
Copy Citation Text
Shi-Yuan Zhou, Hong-Yu Luo, Ya-Zhou Wang, Yong Liu. Numerical design of an efficient Ho3+-doped InF3 fiber laser at ~3.2 μm[J]. Journal of Electronic Science and Technology, 2024, 22(3): 100261
Category:
Received: Feb. 19, 2024
Accepted: May. 26, 2024
Published Online: Oct. 11, 2024
The Author Email: Luo Hong-Yu (yuhl_198904@163.com), Liu Yong (yongliu@uestc.edu.cn)