Acta Optica Sinica, Volume. 41, Issue 8, 0823003(2021)

Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities

Xiaoze Liu1,2, Xinyuan Zhang1,2, Shunping Zhang1,2, Zhiqiang Guan1,2, and Hongxing Xu1,2,3、*
Author Affiliations
  • 1School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
  • 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • 3The Institute for Advanced Studies Wuhan University, Wuhan, Hubei 430072, China
  • show less
    References(187)

    [1] Walther H. Varcoe B T H, Englert B G, et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 69, 1325-1382(2006).

    [3] Yamamoto Y, Tassone F, Cao H. Semiconductor cavity quantum electrodynamics[M]. Heidelberg: Springer(2000).

    [6] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [10] Liu X Z, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities[J]. IEEE Journal of Quantum Electronics, 51, 0600308(2015).

    [12] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. PNAS, 102, 10451-10453(2005).

    [18] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [20] Castro Neto A H, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109(2009).

    [21] Das Sarma S, Adam S, Hwang E H et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 83, 407(2011).

    [22] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [23] Novoselov K S. Nobel lecture: Graphene in the flatland[J]. Reviews of Modern Physics, 83, 837(2011).

    [24] Geim A K. Nobel Lecture: Random walk to graphene[J]. Reviews of Modern Physics, 83, 851(2011).

    [29] Huang P Y, Chenet D A et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 12, 554-561(2013).

    [35] Xu X D, Yao W, Xiao D et al. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nature Physics, 10, 343-350(2014).

    [36] Chernikov A, Berkelbach T C, Hill H M et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 113, 076802(2014).

    [37] Ye Z L, Cao T. O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 513, 214-218(2014).

    [39] Li Y L[M]. Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, 33-43(2015).

    [41] Zeng H, Dai J, Yao W et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 7, 490-493(2012).

    [42] Cao T, Wang G, Han W et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 3, 887(2012).

    [43] Malard L M, Alencar T V. Barboza A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 87, 201401(2013).

    [46] Wang G, Marie X, Gerber I et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 114, 097403(2015).

    [48] Zhao M, Ye Z L, Suzuki R et al. Atomically phase-matched second-harmonic generation in a 2D crystal[J]. Light: Science & Applications, 5, e16131(2016).

    [52] Hu G W, Hong X M, Wang K et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nature Photonics, 13, 467-472(2019).

    [54] He Y M, Clark G, Schaibley J R et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 10, 497-502(2015).

    [60] Chen X T, Lu X, Dubey S et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2[J]. Nature Physics, 15, 221-227(2019).

    [71] Xiao J, Zhao M, Wang Y et al. Excitons in atomically thin 2D semiconductors and their applications[J]. Nanophotonics, 6, 1309-1328(2017).

    [85] Lyons T P, Dufferwiel S, Brooks M et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2[J]. Nature Communications, 10, 2330(2019).

    [92] Sie E J. McIver J W, Lee Y H, et al. Valley-selective optical Stark effect in monolayer WS2[J]. Nature Materials, 14, 290-294(2015).

    [95] Yong C K. Utama M I B, Ong C S, et al. Valley-dependent exciton fine structure and Autler-Townes doublets from Berry phases in monolayer MoSe2[J]. Nature Materials, 18, 1065-1070(2019).

    [96] Sie E J, Lui C H, Lee Y H et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2[J]. Science, 355, 1066-1069(2017).

    [100] Geim A K. Grigorieva I V. van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [103] Rivera P, Seyler K L, Yu H et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure[J]. Science, 351, 688-691(2016).

    [107] Wu F, Lovorn T. MacDonald A H. Topological exciton bands in moiré heterojunctions[J]. Physical Review Letters, 118, 147401(2017).

    [109] Seyler K L, Rivera P, Yu H et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 567, 66-70(2019).

    [111] Alexeev E M. Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures[J]. Nature, 567, 81-86(2019).

    [113] Duan X, Gu Y, Gong Q H. Micro/nanoscale cavity quantum electrodynamics[J]. Physics, 48, 367-375(2019).

    [114] Yu X T, Yuan Y F, Xu J H et al. Strong coupling in microcavity structures: Principle, design, and practical application[J]. Laser & Photonics Reviews, 13, 1800219(2019).

    [115] Zhang S P, Xu H X. Light-matter interaction in microcavity or nanocavity micro/nanoscale cavity quantum electrodynamics[J]. Physics, 49, 156-163(2020).

    [117] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [118] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronicsconfined electrons and photons[M]. ∥Confined Electrons and Photons. New York: Springer(1995).

    [121] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [122] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [126] Xu H X, Bjerneld E J, Käll M et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 83, 4357(1999).

    [127] Xu H, Aizpurua J. Kall M, at al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62, 4318-4324(2000).

    [132] Andreani L C, Panzarini G, Gérard J M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory[J]. Physical Review B, 60, 13276(1999).

    [136] Frisk Kockum A. Miranowicz A, de Liberato S, et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 1, 19-40(2019).

    [138] Purcell E M. Spontaneous emission probabilities at radio frequencies[M]. ∥Confined Electrons and Photons. New York: Springer(1995).

    [139] Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates[J]. Nature Physics, 10, 803-813(2014).

    [143] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [144] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [148] Reeves L, Wang Y, Krauss T F. 2D material microcavity light emitters: To lase or not to lase?[J]. Advanced Optical Materials, 6, 1800272(2018).

    [149] Zhang Y X, Chen W, Fu T et al. Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension[J]. Nano Letters, 19, 6284-6291(2019).

    [150] Chen W, Zhang S, Kang M et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe[J]. Light, Science & Applications, 7, 56(2018).

    [152] Tran T T, Wang D Q, Xu Z Q et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 17, 2634-2639(2017).

    [160] Sun Z, Gu J, Ghazaryan A et al. Optical control of room-temperature valley polaritons[J]. Nature Photonics, 11, 491-496(2017).

    [162] Chen Y J, Cain J D, Stanev T K et al. Valley-polarized exciton-polaritons in a monolayer semiconductor[J]. Nature Photonics, 11, 431-435(2017).

    [182] Gong S H, Alpeggiani F, Sciacca B et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling[J]. Science, 359, 443-447(2018).

    [185] Liu Y D, Fang H L, Rasmita A et al. 5(4): eaav4506(2019).

    [186] Yu H Y, Yao W. Electrically tunable topological transport of moiré polaritons[J]. Science Bulletin, 65, 1555-1562(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoze Liu, Xinyuan Zhang, Shunping Zhang, Zhiqiang Guan, Hongxing Xu. Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities[J]. Acta Optica Sinica, 2021, 41(8): 0823003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Oct. 13, 2020

    Accepted: Dec. 21, 2020

    Published Online: Apr. 10, 2021

    The Author Email: Xu Hongxing (hxxu@whu.edu.cn)

    DOI:10.3788/AOS202141.0823003

    Topics