Photonics Research, Volume. 10, Issue 8, 1840(2022)

Multi-wavelength injection locked semiconductor comb laser Editors' Pick

Jia-Jian Chen1,2,3、†, Wen-Qi Wei1,2、†, Jia-Le Qin1,4, Bo Yang1, Jing-Zhi Huang1,4, Zi-Hao Wang1,2, Ting Wang1,2,5、*, Chang-Yuan Yu3, and Jian-Jun Zhang1,2,4,6、*
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 3Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • 4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5e-mail: wangting@iphy.ac.cn
  • 6e-mail: jjzhang@iphy.ac.cn
  • show less
    References(47)

    [1] B. Corcoran, M. Tan, X. Xu, A. Beos, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. Moss. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [2] H. Hu, F. D. Ros, M. Pu, F. Ye, K. Ingerslev, E. P. D. Silva, M. Mooruzzaman, Y. Amma, Y. Sasaki, T. Minzuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, L. K. Oxenlowe. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics, 12, 469-473(2018).

    [3] G. C. Liu, Z. G. Lu, J. R. Liu, Y. Mao, M. Vachon, C. Song, P. Barrios, P. J. Poole. Passively mode-locked quantum dash laser with 5.4 Tbit/s PAM-4 transmission capacity. Opt. Express, 28, 4587-4593(2020).

    [4] S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [5] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemnesberge, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2021).

    [6] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [7] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [8] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [9] J.-Z. Huang, Z.-T. Ji, J.-J. Chen, W.-Q. Wei, J.-L. Qin, Z.-H. Wang, Z.-Y. Li, T. Wang, X. Xiao, J.-J. Zhang. Ultra-broadband flat-top quantum dot comb lasers. Photon. Res., 10, 1308-1316(2022).

    [10] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [11] Z. C. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, G. Roelkens. A III-V-on-Si ultra-dense comb laser. Light Sci. Appl., 6, e16260(2017).

    [12] S. Cuyvers, B. Haq, C. O. Beeck, S. Peolman, A. Hermans, Z. Wang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, K. V. Gasse, B. Kuyken. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photon. Rev., 15, 2000485(2021).

    [13] W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, J. J. Zhang. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt. Lett., 45, 2042-2045(2020).

    [14] Y. T. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Y. Zhang, L. Chang, W. Q. Xie, D. N. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 2100057(2021).

    [15] W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, J. J. Zhang. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express, 28, 26555-26563(2020).

    [16] D. Liang, S. Srinivasan, A. Descos, C. Zhang, G. Kurczveil, Z. H. Huang, R. Beausoleil. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).

    [17] Q. Feng, W. Q. Wei, B. Zhang, H. L. Wang, J. H. Wang, H. Cong, T. Wang, J. J. Zhang. O-band and C/L-band III-V quantum dot lasers monolithically grown on Ge and Si substrate. Appl. Sci., 9, 385(2019).

    [18] Z. H. Wang, W. Q. Wei, Q. Feng, T. Wang, J. J. Zhang. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback. Opt. Express, 29, 674-683(2021).

    [19] J. Warren, Q. F. Fan, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [20] N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, M. L. Gorodetsky. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [21] A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafanova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, T. J. Kippenberg. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [22] A. S. Voloshin, N. M. Kontiev, G. V. Lihachev, J. Liu, V. E. Lobanov, N. Y. Dmitriev, W. Weng, T. J. Kippenberg, I. A. Bilenko. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [23] W. L. Weng, A. Kaszubowska-Anandarajah, J. J. He, P. D. Lakshmijayasimha, E. Lucas, J. Q. Liu, P. M. Anandarajah, T. J. Kippenberg. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun., 12, 1425(2021).

    [24] A. Savchenkov, S. Williams, A. Matsko. On stiffness of optical self-injection locking. Photonics, 5, 43(2018).

    [25] Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, Z. J. Fang. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter. IEEE Photon. J., 2, 571-577(2010).

    [26] M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, L. Potí. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Commun. Surveys Tuts., 20, 211-263(2017).

    [27] J. Hillbrand, A. M. Andrews, H. Detz, G. Strasser, B. Schwarz. Coherent injection locking of quantum cascade laser frequency combs. Nat. Photonics, 13, 101-104(2019).

    [28] L. Consolino, M. Nafa, F. Cappelli, K. Garrasi, F. P. Mezzapesa, L. Li, A. G. Davies, E. H. Linfield, M. S. Vitiello, P. D. Natale, S. Bartalini. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun., 10, 2938(2019).

    [29] Q. Lu, D. Wu, S. Silvken, M. Razeghi. High efficiency quantum cascade laser frequency comb. Sci. Rep., 7, 43806(2017).

    [30] M. Piccardo, P. Chevalier, B. Schwarz, D. Kazakov, Y. Wang, A. Belyanin, F. Capasso. Frequency-modulated combs obey a variational principle. Phys. Rev. Lett., 122, 253901(2019).

    [31] N. Opačak, S. D. Cin, J. Hillbrand, B. Schwarz. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett., 127, 093902(2021).

    [32] N. Opačak, B. Schwarz. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett., 123, 243902(2019).

    [33] J. Hillbrand, D. Auth, M. Piccardo, N. Opačak, E. Gornik, G. Strasser, F. Capasso, S. Breuer, B. Schwarz. In-phase and anti-phase synchronization in a laser frequency comb. Phys. Rev. Lett., 124, 023901(2020).

    [34] S. J. Pan, J. O. Huang, Z. C. Zhou, Z. X. Liu, L. Ponnampalam, Z. Z. Liu, M. C. Tang, M. C. Lo, Z. Z. Cao, K. Nishi, K. Takemasa, M. Sugawara, R. Penty, I. White, A. Seeds, H. Y. Liu, S. M. Chen. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C. Photon. Res., 8, 1937-1942(2020).

    [35] L. P. Hou, Y. G. Huang, Y. H. Liu, R. K. Zhang, J. K. Wang, B. J. Wang, H. L. Zhu, B. Hou, B. C. Qiu, J. H. Marsh. Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser. Opt. Lett., 45, 2760-2763(2020).

    [36] J. Jung, Y. W. Lee. Continuously wavelength-tunable passband-flattened fiber comb filter based on polarization-diversified loop structure. Sci. Rep., 7, 8311(2017).

    [37] O. Aharon, I. Abdulhalim. Liquid crystal Lyot tunable filter with extended free spectral range. Opt. Express, 17, 11426-11433(2009).

    [38] G. Sun, D. S. Moon, A. Lin, W. T. Han, Y. Chung. Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror. Opt. Express, 16, 3652-3658(2008).

    [39] J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, S. Jian. Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser. Opt. Express, 17, 10573-10583(2009).

    [40] J. Ge, M. P. Fok. Passband switchable microwave photonic multiband filter. Sci. Rep., 5, 15882(2015).

    [41] L. Wang, H. Zhao, B. Shi, S. Pinna, S. S. Brunelli, F. Sang, B. Song, J. Klamkin. High performance 1.3 μm aluminum-free quantum dot lasers grown by MOCVD. Optical Fiber Communication Conference, T4H-2(2020).

    [42] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [43] C. Xiang, J. Guo, W. Jin, L. Wu, J. Peters, W. Xie, L. Chang, B. Shen, H. Wang, Q. F. Yang, D. Kinghorn, M. Paniccia, K. J. Vahala, P. A. Morton, J. E. Bowers. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [44] G. Kurczveil, A. Descos, D. Liang, M. Fiorentino, R. Beausoleil. Hybrid silicon quantum dot comb laser with record wide comb width. Frontiers in Optics, FTu6E-6(2020).

    [45] A. Kaushalram, G. Hedge, S. Talabattula. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides. Sci. Rep., 10, 16692(2020).

    [46] Z. Lin, Y. Lin, H. Li, M. Xu, W. Ke, Z. Li, D. Wang, X. S. Yao, S. Yu, X. Cai. High performance polarization management devices based on thin-film lithium niobate(2021).

    [47] M. Xu, Y. Zhu, F. Pattala, J. Tang, M. He, W. C. Ng, J. Wang, Z. Ruan, X. Tang, M. Kuschnerov, L. Liu, S. Yu, B. Zheng, X. Cai. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jia-Jian Chen, Wen-Qi Wei, Jia-Le Qin, Bo Yang, Jing-Zhi Huang, Zi-Hao Wang, Ting Wang, Chang-Yuan Yu, Jian-Jun Zhang. Multi-wavelength injection locked semiconductor comb laser[J]. Photonics Research, 2022, 10(8): 1840

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Jan. 28, 2022

    Accepted: Jun. 8, 2022

    Published Online: Jul. 21, 2022

    The Author Email: Ting Wang (wangting@iphy.ac.cn), Jian-Jun Zhang (jjzhang@iphy.ac.cn)

    DOI:10.1364/PRJ.455165

    Topics