Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0900003(2023)

Research Progress of 2 μm Band Nanosecond Thulium-Doped Fiber Laser

Junjie Ren1,2,3, Zhenxing He1,3, Ting Yu1,2,3, and Xisheng Ye1,2,3、*
Author Affiliations
  • 1Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(77)

    [1] Hanna D C, Jauncey I M, Percival R M et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 24, 1222-1223(1988).

    [2] Hanna D C, Percival R M, Smart R G et al. Efficient and tunable operation of a Tm-doped fibre laser[J]. Optics Communications, 75, 283-286(1990).

    [3] Hanna D C, Perry I R, Lincoln J R et al. A 1-Watt thulium-doped cw fibre laser operating at 2 μm[J]. Optics Communications, 80, 52-56(1990).

    [4] Myslinski P, Pan X, Barnard C W et al. Q-switched thulium-doped fiber laser[J]. Optical Engineering, 32, 2025-2030(1993).

    [5] Nelson L E, Ippen E P, Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Applied Physics Letters, 67, 19-21(1995).

    [6] Yang L Y, Zhang B, Hou J. Progress on high-power supercontinuum laser sources at 3-5 μm[J]. Chinese Journal of Lasers, 49, 0101001(2022).

    [7] de Young R J, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 49, 562-567(2010).

    [8] Schneider J, Forster P, Romano C et al. High pulse energy ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser[J]. Optics Letters, 46, 2139-2142(2021).

    [9] Gebhardt M, Gaida C, Kadwani P et al. Nanosecond Tm∶fiber MOPA system for high peak power mid-IR generation in a ZGP OPO[C], MW3B.2(2013).

    [10] Eichhorn M. Pulsed 2 µm fiber lasers for direct and pumping applications in defence and security[J]. Proceedings of SPIE, 7836, 78360B(2010).

    [11] El-Sherif A F, King T A. High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 µm[J]. Optics Letters, 28, 22-24(2003).

    [12] El-Sherif A F, King T A. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[J]. Optics Communications, 218, 337-344(2003).

    [13] Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm[J]. Optics Letters, 32, 2780-2782(2007).

    [14] Willis C C C, Shah L, Baudelet M et al. High-energy Q-switched Tm3+-doped polarization maintaining silica fiber laser[J]. Proceedings of SPIE, 7580, 758003(2010).

    [15] Kadwani P, Modsching N, Sims R A et al. Q-switched thulium-doped photonic crystal fiber laser[J]. Optics Letters, 37, 1664-1666(2012).

    [16] Stutzki F, Jansen F, Jauregui C et al. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Optics Letters, 38, 97-99(2013).

    [17] Schneider J, Forster P, Romano C et al. Investigation of the pulse energy limits of actively Q-switched polarization-maintaining Tm3+-doped fiber lasers[J]. OSA Continuum, 4, 1577-1586(2021).

    [18] Chen Z J, Grudinin A B, Porta J et al. Enhanced Q switching in double-clad fiber lasers[J]. Optics Letters, 23, 454-456(1998).

    [19] Renaud C C, Selvas-Aguilar R J, Nilsson J et al. Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm[J]. IEEE Photonics Technology Letters, 11, 976-978(1999).

    [20] Lees G P, Taverner D, Richardson D J et al. Q-switched erbium doped fibre laser utilising a novel large mode area fibre[J]. Electronics Letters, 33, 393-394(1997).

    [21] Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics Letters, 23, 1462-1464(1998).

    [22] Jackson S D, Mossman S. Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers[J]. Applied Optics, 42, 2702-2707(2003).

    [23] Geng J H, Wang Q, Smith J et al. All-fiber Q-switched single-frequency Tm-doped laser near 2 μm[J]. Optics Letters, 34, 3713-3715(2009).

    [24] Shi W, Petersen E B, Nguyen D T et al. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers[J]. Optics Letters, 36, 3575-3577(2011).

    [25] Sahu J K, Philippov V, Kim J et al. Passively Q-switched thulium-doped silica fiber laser[C](2004).

    [26] Fang S Y, Zhou B L, Guan Z et al. Compact passively Q-switched single-frequency distributed Bragg reflector fiber laser at 2.0 µm[J]. Applied Optics, 60, 10684-10688(2021).

    [27] Jung M, Koo J, Chang Y M et al. An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction[J]. Laser Physics Letters, 9, 669-673(2012).

    [28] Ma H F, Wang Y G, Zhou W et al. A passively Q-switched thulium-doped fiber laser with single-walled carbon nanotubes[J]. Laser Physics, 23, 035109(2013).

    [29] Liu J, Xu J, Wang P. Graphene-based passively Q-switched 2 μm thulium-doped fiber laser[J]. Optics Communications, 285, 5319-5322(2012).

    [30] Wang F, Torrisi F, Jiang Z et al. Graphene passively Q-switched two-micron fiber lasers[C](2012).

    [31] Tang Y L, Yu X C, Li X H et al. High-power thulium fiber laser Q switched with single-layer graphene[J]. Optics Letters, 39, 614-617(2014).

    [32] Yu H, Zheng X, Yin K et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 6, 603-609(2016).

    [33] Ren Y, Qin Z P, Xie G Q et al. Black phosphorus Q-switched large-mode-area Tm-doped fiber laser[J]. International Journal of Optics, 2018, 8060415(2018).

    [34] Luo Z Q, Liu C, Huang Y Z et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0902708(2014).

    [35] Tsai T Y, Tsao H X, Huang C L et al. 1590-nm-pumped passively Q-switched thulium all-fiber laser at 1900 nm[J]. Optics Express, 23, 11205-11210(2015).

    [36] Jackson S D. Passively Q-switched Tm3+-doped silica fiber lasers[J]. Applied Optics, 46, 3311-3317(2007).

    [37] Jiang M, Tayebati P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser[J]. Optics Letters, 32, 1797-1799(2007).

    [38] Ding J W, Sampson B, Carter A et al. A monolithic thulium doped single mode fiber laser with 1.5ns pulsewidth and 8 kW peak power[J]. Proceedings of SPIE, 7914, 79140X(2011).

    [39] Tang Y L, Li F, Xu J Q. High peak-power gain-switched Tm3+-doped fiber laser[J]. IEEE Photonics Technology Letters, 23, 893-895(2011).

    [40] Simakov N, Hemming A, Bennetts S et al. Efficient, polarised, gain-switched operation of a Tm-doped fibre laser[J]. Optics Express, 19, 14949-14954(2011).

    [41] Tang Y L, Xu J Q. Hybrid-pumped gain-switched narrow-band thulium fiber laser[J]. Applied Physics Express, 5, 072702(2012).

    [42] Tang Y L, Li F, Xu J Q. Narrow-pulse-width gain-switched thulium fiber laser[J]. Laser Physics Letters, 10, 035101(2013).

    [43] Zhong M F, Sun H Y, Liu T L et al. Ultra-low repetition rate gain-switched thulium-doped fibre laser at 2 μm[J]. Quantum Electronics, 47, 877-881(2017).

    [44] Pal D, Paul A, Chowdhury S D et al. Hybrid pumped gain-switched thulium fiber laser at a high repetition rate[J]. Applied Optics, 57, 3546-3550(2018).

    [45] Liu S L, Dou Z Y, Zhang B et al. High repetition rate gain-switched thulium-doped fiber laser pumped by 1.6 μm noise-like pulses[J]. Optics & Laser Technology, 138, 106856(2021).

    [46] Zhang H R, Lin W, Wu D D et al. Direct generation of 7 W, 360 μJ multi-pulse laser from an ultra-compact all-fiber gain switched Tm³+-doped double-clad fiber laser[J]. IEEE Photonics Technology Letters, 33, 1258-1261(2021).

    [47] Jackson S D, King T A. Efficient gain-switched operation of a Tm-doped silica fiber laser[J]. IEEE Journal of Quantum Electronics, 34, 779-789(1998).

    [48] Swiderski J, Michalska M. Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser[J]. Optics Letters, 38, 1624-1626(2013).

    [49] Tao M M, Zhao J W, Yan Y et al. Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers[J]. Laser Physics, 23, 105101(2013).

    [50] Li L, Zhang B, Yin K et al. 1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05μm[J]. Optics Express, 23, 18098-18105(2015).

    [51] Wang X, Zhou P, Wang X L et al. Contrastive research on hybrid-pump pulse and gain-switch pulse Tm-Ho Co-doped fiber lasers[J]. Chinese Journal of Lasers, 41, 0302010(2014).

    [52] Kharitonov S, Brès C S. Microjoule-level widely tunable gain-switched thuliumdoped fiber laser[C], JW2A.32(2019).

    [53] Shi H X, Liu J, Liu K et al. 160 W average power single-polarization, nanosecond pulses generation from diode-seeded thulium-doped all fiber MOPA system[J]. Proceedings of SPIE, 9344, 93441O(2015).

    [54] Gaida C, Gebhardt M, Kadwani P et al. Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod[J]. Optics Letters, 38, 691-693(2013).

    [55] Tang Y L, Li X H, Yan Z Y et al. 50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 537-543(2014).

    [56] Swiderski J, Michalska M, Pichola W et al. Generation of 25-ns pulses with a peak power of over 10 kW from a gain-switched, 2-μm Tm-doped fibre laser and amplifier system[J]. Quantum Electronics, 44, 294-297(2014).

    [57] Yang J L, Wang Y, Zhang G et al. High-power highly linear-polarized nanosecond all-fiber MOPA at 2040 nm[J]. IEEE Photonics Technology Letters, 27, 986-989(2015).

    [58] Ouyang D Q, Zhao J Q, Zheng Z J et al. 110 W all fiber actively Q-switched thulium-doped fiber laser[J]. IEEE Photonics Journal, 7, 1500407(2015).

    [59] Wang X, Jin X X, Zhou P et al. 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on monolithic Tm-doped fiber MOPA[J]. Optics Express, 23, 4233-4241(2015).

    [60] Wang X, Jin X X, Zhou P et al. All-fiber-integrated narrowband nanosecond pulsed Tm-doped fiber MOPA[J]. IEEE Photonics Technology Letters, 27, 1473-1476(2015).

    [61] Wang X, Jin X X, Zhou P et al. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy[J]. Applied Optics, 55, 1941-1945(2016).

    [62] Ouyang D Q, Zhao J Q, Zheng Z J et al. Repetition-rate-switchable and self-mode-locked pulses generation from a gain-switched thulium-doped fiber laser and their amplification properties[J]. IEEE Photonics Journal, 9, 1503710(2017).

    [63] Grzes P, Swiderski J. Gain-switched 2-μm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers[J]. IEEE Photonics Journal, 10, 1500408(2018).

    [64] He Z X, Yu T, Meng J et al. 2 μm band pulsed all-PM thulium-doped fiber laser based on the acousto-optic Q-switching[J]. Proceedings of SPIE, 11763, 117634F(2021).

    [65] Fang Q, Shi W, Kieu K et al. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling[J]. Optics Express, 20, 16410-16420(2012).

    [66] Wang S J, Cai Y M, Zhang Z L et al. 1000 W nanosecond pulsed laser output based on homemade 100 μm/400 μm fiber[J]. Chinese Journal of Lasers, 48, 0115001(2021).

    [67] Stutzki F, Jansen F, Liem A et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 37, 1073-1075(2012).

    [68] Lapointe M A, Chatigny S, Piché M et al. Thermal effects in high-power CW fiber lasers[J]. Proceedings of SPIE, 7195, 71951U(2009).

    [69] Jollivet C, Farley K, Conroy M et al. Design optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and amplifiers[J]. Proceedings of SPIE, 10083, 100830I(2017).

    [70] Sincore A, Bradford J D, Cook J et al. High average power thulium-doped silica fiber lasers: review of systems and concepts[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901808(2018).

    [71] Creeden D, Johnson B R, Rines G A et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations[J]. Optics Express, 22, 29067-29080(2014).

    [72] Jin X X, Lee E, Luo J Q et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping[J]. Optics Letters, 43, 1431-1434(2018).

    [73] Tao M M, Ye X S, Ye J F et al. Modeling in-band pumped kW level high-power Tm-doped fiber lasers via simulations[J]. Chinese Journal of Lasers, 49, 0101019(2022).

    [74] Fang Q, Shi W, Petersen E et al. Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm[J]. IEEE Photonics Technology Letters, 24, 353-355(2012).

    [75] Zhu R, Wang J T, Zhou J et al. Single-frequency high-energy Yb-doped pulsed all-fiber laser[J]. Chinese Optics Letters, 10, 091402(2012).

    [76] Zhang X, Diao W F, Liu Y et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W[J]. Applied Optics, 53, 2465-2469(2014).

    [77] Yu M, Jin G Y, Wang J et al. Optimization of ASE suppression in high efficiency Tm3+-doped pulsed all-fibered MOPA operating at 1908.12 nm[J]. Infrared Physics & Technology, 105, 103173(2020).

    Tools

    Get Citation

    Copy Citation Text

    Junjie Ren, Zhenxing He, Ting Yu, Xisheng Ye. Research Progress of 2 μm Band Nanosecond Thulium-Doped Fiber Laser[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 8, 2022

    Accepted: Apr. 14, 2022

    Published Online: Apr. 24, 2023

    The Author Email: Ye Xisheng (xsye@siom.ac.cn)

    DOI:10.3788/LOP220665

    Topics