Acta Photonica Sinica, Volume. 53, Issue 10, 1053402(2024)
Precision Processing Technology Based on Laser Filament(Invited)
[1] Y CHEN. Nanofabrication by electron beam lithography and its applications: a review. Microelectronic Engineering, 135, 57-72(2015).
[2] Y KAWABATA, J TANIGUCHI, I MIYAMOTO. XPS studies on damage evaluation of single-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching. Diamond and Related Materials, 13, 93-98(2004).
[3] I MILOV, V ZHAKHOVSKY, D ILNITSKY et al. Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation. Applied Surface Science, 528, 146952(2020).
[4] Y LI, X ZHAN, C GAO et al. Comparative study of infrared laser surface treatment and ultraviolet laser surface treatment of CFRP laminates. The International Journal of Advanced Manufacturing Technology, 102, 4059-4071(2019).
[5] G PALTAUF, P E DYER. Photomechanical processes and effects in ablation. Chemical Reviews, 103, 487-518(2003).
[6] X LIU, K NATSUME, S MAEGAWA et al. Micromachining of polycrystalline CVD diamond-coated cutting tool with femtosecond laser. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14(2020).
[7] Z HE, L LEI, S LIN et al. Metal material processing using femtosecond lasers: theories, principles, and applications. Materials (Basel), 17, 3386(2024).
[8] J QIU, K MIURA, K HIRAO. Fabrication of micro-optical components by using a femtosecond laser. Optical Components and Materials, 5350, 1-12(2004).
[9] C LU, W DUAN, K WANG et al. Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser. Ferroelectrics, 564, 37-51(2020).
[10] T WANG, L LIN, N ZHANG. Compound structures of periodic holes and curved ripples fabricated by the interference between the converging surface plasmon polaritons and femtosecond laser. Applied Sciences, 12, 2543(2022).
[11] Z Z LI, Z N TIAN, Z T LI et al. Photon propagation control on laser-written photonic chips enabled by composite waveguides. Photonics Research, 11, 829-838(2023).
[12] X ZHAN, H XU, C LI et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments. Optics Letters, 42, 510-513(2017).
[13] X Y FU, Z D CHEN, D D HAN et al. Laser fabrication of graphene-based supercapacitors. Photonics Research, 8, 577-588(2020).
[14] Weiwei LIU, Jiayun XUE, Qiang SU et al. Research progress on ultrafast laser filamentation. Chinese Journal of Lasers, 47, 0500003(2020).
[15] B HAFIZI, J ISAACS, J P PALASTRO et al. Nonlinear propagation of chirped laser pulses through a dispersive and turbulent atmosphere. Journal of the Optical Society of America B, 41, 1457-1470(2024).
[16] J BAK, G URDANETA, S POKHAREL et al. Two-dimensional high resolution electron properties of femtosecond laser-induced plasma filament in atmospheric pressure argon. Scientific Reports, 14, 3703(2024).
[17] H JIANG, C LI, X MAO et al. Reliable joining between MgAl2O4 and Ti6Al4V by ultrashort pulse laser. Ceramics International, 50, 31609-31617(2024).
[18] P BARBATO, R OSELLAME, R MARTíNEZ VáZQUEZ. Femtosecond laser nanomachining of high‐aspect‐ratio channels in bulk fused silica. Advanced Materials Technologies, 2400240(2024).
[19] Kai LIAO, Wenjun WANG, Xuesong HAN et al. Femtosecond laser single-pass high quality direct cutting thin quartz glass process based on filament effect(invited). Acta Photonica Sinica, 50, 0650101(2021).
[20] Y WANG, Y DAI, F MUMTAZ et al. Advanced techniques in quartz wafer precision processing: stealth dicing based on filament-induced laser machining. Optics & Laser Technology, 171, 110474(2024).
[21] E MARKAUSKAS, L ZUBAUSKAS, G RACIUKAITIS et al. Femtosecond laser cutting of 110-550 microm thickness borosilicate glass in ambient air and water. Micromachines (Basel), 14, 176(2023).
[22] M S AHSAN, I BSOHN, H KCHOI. Gorilla glass cutting using femtosecond laser pulse filaments. Applied Sciences, 14, 312(2023).
[23] W YAN, S SHI, L XIAO et al. The influence of the interface on the micromechanical behavior of unidirectional fiber-reinforced ceramic matrix composites: an analysis based on the periodic symmetric boundary conditions. Symmetry, 16, 695(2024).
[24] J ZHANG, F ZHANG, T J WANG et al. Femtosecond laser filament ablated grooves of SiC ceramic matrix composite and its grooving monitoring by plasma fluorescence. Ceramics International, 50, 16474-16480(2024).
[25] K LIAO, W WANG, X MEI et al. Fabrication of millimeter-scale deep microchannels in fused silica by femtosecond laser filamentation effect. Optics & Laser Technology, 142, 107201(2021).
[26] B LIU, Y YAN, J ZHAO et al. Research on hole depth in femtosecond laser deep micropore processing technology based on filament effect. Optik, 249, 168307(2022).
[27] H VAREL, D ASHKENASI, A ROSENFELD et al. Micromachining of quartz with ultrashort laser pulses. Applied Physics A: Materials Science & Processing, 65, 367-373(1997).
[28] E ERTORER, M HAQUE, J LI et al. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating. Optics Express, 26, 9323-9331(2018).
[29] W WATANABE, T ASANO, K YAMADA et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Optics Letters, 28, 2491-2493(2003).
[30] S H CHO, H KUMAGAI, K MIDORIKAWA. Fabrication of multi-core structures in an optical fiber using plasma self-channeling. Optics Express, 11, 1780-1786(2003).
[31] L LI, W NIE, Z LI et al. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal. Journal of Lightwave Technology, 37, 3452-3458(2019).
[32] B ZHANG, S HE, Q YANG et al. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Applied Physics Letters, 116, 111903(2020).
[33] S KROESEN, W HORN, J IMBROCK et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Optics Express, 22, 23339-23348(2014).
[34] M CHEN, X X YANG, F SHU. Dual-band tunable electromagnetically induced transparency in vanadium dioxide-based miniaturized terahertz metasurfaces. Materials Research Bulletin, 180, 113000(2024).
[35] T LIN, Q ZENG, Y HUANG et al. Femtosecond laser direct writing wedge metallic microcavities for terahertz sensing. Optics & Laser Technology, 180, 111434(2025).
[36] Z ZHANG, Z DAI, Y WANG et al. Fabricating THz spiral zone plate by high throughput femtosecond laser air filament direct writing. Scientific Reports, 10, 13965(2020).
[37] D KISELEV, L WOESTE, J P WOLF. Filament-induced laser machining (FILM). Applied Physics B, 100, 515-520(2010).
[39] A HEISTERKAMP, P R HERMAN, M MEUNIER et al. Rapid microfabrication of transparent materials using a filamented beam of the IR femtosecond laser. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV, 8972, 897216(2014).
[40] T TAMAKI, W WATANABE, J NISHII et al. Welding of transparent materials using femtosecond laser pulses. Japanese Journal of Applied Physics, 44, L687(2005).
[41] J CHEN, R M CARTER, R R THOMSON et al. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Optics Express, 23, 18645-18657(2015).
[42] H YU, J X ZHAO, L J ZHANG et al. Femtosecond laser welding of sapphire-copper using a thin film titanium interlayer. Optics & Laser Technology, 177, 111063(2024).
[43] L ZHANG, Z ZHU, J WEN et al. The characteristics and dynamics of fused silica-aluminum alloy welding during mJ-level femtosecond laser. Materials & Design, 239, 112790(2024).
[44] M SWOBODA, C BEYER, R RIESKE et al. Laser assisted SiC wafering using COLD SPLIT. Materials Science Forum, 897, 403-406(2017).
[45] S HAN, H YU, C HE et al. Laser slicing of 4H-SiC wafers based on picosecond laser-induced micro-explosion via multiphoton processes. Optics & Laser Technology, 154, 108323(2022).
[46] Y ZHANG, X XIE, Y HUANG et al. Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing. Ceramics International, 49, 5249-5260(2023).
[47] R MEESAT, H BELMOUADDINE, J ALLARD et al. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proceedings of the National Academy of Sciences of the United States of America, 109, E2508-E2513(2012).
Get Citation
Copy Citation Text
Hongzhi HE, Zhaolin CHAI, Nan ZHANG, Weiwei LIU. Precision Processing Technology Based on Laser Filament(Invited)[J]. Acta Photonica Sinica, 2024, 53(10): 1053402
Category: Special Issue for Micro/Nanophotonics
Received: Aug. 15, 2024
Accepted: Sep. 26, 2024
Published Online: Dec. 5, 2024
The Author Email: LIU Weiwei (liuweiwei@nankai.edu.cn)