Laser & Optoelectronics Progress, Volume. 54, Issue 6, 63001(2017)

Measurement of Trace Moisture Based on Integrated Cavity at 1392 nm with High Sensitivity

Xu Dong1,2, Wu Tao1,2, He Xingdao1,2, and Fang Hui1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(28)

    [1] [1] Funke H H, Grissom B L, McGrew C E, et al. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Review of Scientific Instruments, 2003, 74(9): 3909-3933.

    [2] [2] Hashiguchi K, Lisak D, Cygan A, et al. Wavelength-meter controlled cavity ring-down spectroscopy: high-sensitivity detection of trace moisture in N2 at sub-ppb levels[J]. Sensors and Actuators A: Physical, 2016, 241: 152-160.

    [3] [3] Abe H, Kitano H, Matsumoto N, et al. Uncertainty analysis for trace-moisture standard realized using a magnetic suspension balance/diffusion-tube humidity generator developed at NMIJ[J]. Metrologia, 2015, 52(6): 731-740.

    [4] [4] Islam T, Khan A U, Akhtar J, et al. A digital hygrometer for trace moisture measurement[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5599-5605.

    [5] [5] Chen B, Kang P, Li J, et al. Quantitative moisture measurement with a cavity ring-down spectrometer using telecom diode Lasers[J]. Chinese Journal of Chemical Physics, 2015, 28(1): 6-10.

    [6] [6] Abe H, Lisak D, Cygan A,et al. Note: reliable, robust measurement system for trace moisture in gas at parts-per-trillion levels using cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 2015, 86(10): 106110.

    [7] [7] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408.

    [8] [8] Peltola O, Hensen A, Helfter C, et al. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment[J]. Biogeosciences Discussions, 2014, 11(1): 797-852.

    [9] [9] Gao Guangzhen, Cai Tingdong. CO concentration measurement using multi-mode laser diode absorption spectroscopy near 1570 nm[J]. Acta Optica Sinica, 2016, 36(5): 0530002.

    [10] [10] Li Mingxing, Liu Jianguo, Kan Ruifeng, et al. Design of real-time measurement of atmospheric CO and CH4 based on tunable diode laser spectroscopy system[J]. Acta Optica Sinica, 2015, 35(4): 0430001.

    [11] [11] Yao Lu, Liu Wenqing, Liu Jianguo, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese J Lasers, 2015, 42(2): 0215003.

    [13] [13] Berman E S F, Fladeland M, Liem J, et al. Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle[J]. Sensors and Actuators B: Chemical, 2012, 169: 128-135.

    [14] [14] Tian C, Wang L, Novick K A. Water vaporδ2H, δ18O and δ17O measurements using an off-axis integrated cavity output spectrometer-sensitivity to water vapor concentration, delta value and averaging-time[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2077-2086.

    [15] [15] Baer D S, Paul J B, Gupta M, et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated cavity output spectroscopy[J]. Applied Physics B, 2002, 75(2): 261-265.

    [16] [16] van Helden J H, Lang N, Macherius U, et al. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser[J]. Applied Physics Letters, 2013, 103(13): 131114.

    [17] [17] Centeno R, Mandon J, Cristescu S M, et al. External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation[J]. Optics Express, 2015, 23(5): 6277-6282.

    [18] [18] Foltynowicz A, Schmidt F M, Ma W, et al. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential[J]. Applied Physics B, 2008, 92(3): 313-326.

    [20] [20] Triki M, Cermak P, Mejean G, et al. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis[J]. Applied Physics B, 2008, 91(1): 195-201.

    [21] [21] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

    [22] [22] Wojtas J, Mikolajczyk J, Bielecki Z. Aspects of the application of cavity enhanced spectroscopy to nitrogen oxides detection[J]. Sensors, 2013, 13(6): 7570-7598.

    [23] [23] Linnerud I, Kaspersen P, Jaeger T. Gas monitoring in the process industry using diode laser spectroscopy[J]. Applied Physics B: Lasers and Optics, 1998, 67(3): 297-305.

    [24] [24] Li J S, Chen W, Fischer H. Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry[J]. Applied Spectroscopy Reviews, 2013, 48(7): 523-559.

    [25] [25] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 2012, 24(1): 012004.

    [26] [26] Rapson T D, Dacres H. Analytical techniques for measuring nitrous oxide[J]. TrAC Trends in Analytical Chemistry, 2014, 54: 65-74.

    [27] [27] Sneep M, Ubachs W. Direct measurement of the Rayleigh scattering cross section in various gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92(3): 293-310.

    [28] [28] Bakhirkin Y A, Kosterev A A, Curl R F, et al. Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy[J]. Applied Physics B, 2006, 82(1): 149-154.

    Tools

    Get Citation

    Copy Citation Text

    Xu Dong, Wu Tao, He Xingdao, Fang Hui. Measurement of Trace Moisture Based on Integrated Cavity at 1392 nm with High Sensitivity[J]. Laser & Optoelectronics Progress, 2017, 54(6): 63001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jan. 7, 2017

    Accepted: --

    Published Online: Jun. 8, 2017

    The Author Email:

    DOI:10.3788/lop54.063001

    Topics