Acta Photonica Sinica, Volume. 52, Issue 11, 1116001(2023)

Progress and Challenges of Efficient and Stable Halide-based Perovskite Solar Cells(Invited)

Kun HE1... Xiaoliang ZHAO1, Jun WANG1, Bixin LI2,3,*, Bin DU1,** and Yanlong WANG4,*** |Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering,Xi'an Polytechnic University,Xi'an 710048,China
  • 2School of Physics and Chemistry,Hunan First Normal University,Changsha 410205,China
  • 3Shaanxi Institute of Flexible Electronics,Northwestern Polytechnical University,Xi'an 710072,China
  • 4Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
  • show less
    References(137)

    [1] Taotao LI, Yufeng PAN, Ze WANG et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 5, 12602-12652(2017).

    [2] P ROY, S N KUMAR, S TIWARI et al. A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 198, 665-688(2020).

    [3] Huimin XIANG, Pengyu LIU, Wei WANG et al. Towards highly stable and efficient planar perovskite solar cells: materials development, defect control and interfacial engineering. Chemical Engineering Journal, 420, 127599(2021).

    [4] Xisheng ZHANG, Chunyu YAN, Jingzhou WANG et al. Optimizing processes of silicon heterojunction solar cell. Acta Photonica Sinica, 50, 1223001(2021).

    [5] Wu LIU, Haotian LI, Bo QIAO et al. Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Solar Energy, 233, 337-344(2022).

    [7] C LI, Xionggang LU, Weizhong DING et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B, 64, 702-707(2008).

    [8] M A GREEN, A HO-BAILLIE, H J SNAITH. The emergence of perovskite solar cells. Nature Photonics, 8, 506-514(2014).

    [9] Yonghua CHEN, Tao CHEN, Liming DAI. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells. Advanced Materials, 27, 1053-1059(2015).

    [10] Y OGOMI, A MORITA, S TSUKAMOTO et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. The Journal of Physical Chemistry Letters, 5, 1004-1011(2014).

    [11] Ying JIANG, Xiao WANG, Anlian PAN. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Advanced Materials, 31, 1806671(2019).

    [12] O V MIKHNENKO, P W M BLOM, T Q NGUYEN. Exciton diffusion in organic semiconductors. Energy & Environmental Science, 8, 1867-1888(2015).

    [13] P K NAYAK, N PERIASAMY. Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’ model and DFT. Organic Electronics, 10, 1396-1400(2009).

    [14] P V KAMAT. Evolution of perovskite photovoltaics and decrease in energy payback time. The Journal of Physical Chemistry Letters, 4, 3733-3734(2013).

    [15] T B SONG, Qi CHEN, Huanping ZHOU et al. Perovskite solar cells: Film formation and properties. Journal of Materials Chemistry A, 3, 9032-9050(2015).

    [16] T C SUM, N MATHEWS. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy & Environmental Science, 7, 2518-2534(2014).

    [17] G MICHAEL. The light and shade of perovskite solar cells. Nature Materials, 13, 838-842(2014).

    [18] H S JUNG, N G PARK. Perovskite solar cells: From materials to devices. Small, 11, 10-25(2015).

    [19] Lening SHEN, Haodong WU, Tao ZHU et al. Three- and two-dimensional mixed metal halide perovskites for high-performance photovoltaics. Organic Electronics, 118, 106796(2023).

    [20] Xiaomin WU, Changsong GAO, Qizhen CHEN et al. High-performance vertical field-effect organic photovoltaics. Nature Communications, 14, 1579(2023).

    [21] Lijuan YAO, Xuan FANG, Dan FANG et al. Research progress of the stability and photodetectors applications of organic-inorganic hybrid halide perovskite materials(Invited). Acta Photonica Sinica, 50, 0150001(2021).

    [22] S TAN, Tianyi HUANG, I YAVUZ et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 605, 268-273(2022).

    [23] J Y KIM, J W LEE, H S JUNG et al. High-efficiency perovskite solar cells. Chemical Reviews, 120, 7867-7918(2020).

    [24] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [25] J H IM, C R LEE, J W LEE et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3, 4088-4093(2011).

    [26] Deying LUO, Rui SU, Wei ZHANG et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 5, 44-60(2019).

    [27] H S KIM, C R LEE, J H IM et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 591(2012).

    [28] J BURSCHKA, N PELLET, S J MOON et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319(2013).

    [29] N J JEON, H NA, E H JUNG et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3, 682-689(2018).

    [30] M JEONG, I W CHOI, E M GO et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369, 1615-1620(2020).

    [31] M M LEE, J TEUSCHER, T MIYASAKA et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

    [32] J M BALL, M M LEE, A HEY et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 6, 1739-1743(2013).

    [33] Dongqin BI, S J MOON, L HÄGGMAN et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2and TiO2 mesostructures. RSC Advances, 3, 18762-18766(2013).

    [34] S H HWANG, J ROH, J LEE et al. Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. Journal of Materials Chemistry A, 2, 16429-16433(2014).

    [35] J J YOO, S WIEGHOLD, M C SPONSELLER et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy & Environmental Science, 12, 2192-2199(2019).

    [36] G E EPERON, V M BURLAKOV, P DOCAMPO et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 24, 151-157(2014).

    [37] Dianyi LIU, T L KELLY. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8, 133-138(2013).

    [38] E H ANARAKI, A KERMANPUR, L STEIER et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science, 9, 3128-3134(2016).

    [39] J J YOO, G SEO, M R CHUA et al. Efficient perovskite solar cells via improved carrier management. Nature, 590, 587-593(2021).

    [40] H MIN, D Y LEE, J KIM et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598, 444-450(2021).

    [41] Yang ZHAO, Fei MA, Zihan QU et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 377, 531-534(2022).

    [42] J Y JENG, Y F CHIANG, M H LEE et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 25, 3727-3732(2013).

    [43] Yunxiang WANG, Jihua ZHANG, Yanhua WU et al. Perovskite solar cells based on graphene oxide hole transport layer. Acta Photonica Sinica, 48, 0316001(2019).

    [44] Xiaopeng ZHENG, Yi HOU, Chunxiong BAO et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 5, 131-140(2020).

    [45] Xiao WANG, K RAKSTYS, K JACK et al. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 12, 52(2021).

    [46] Qi JIANG, Jinhui TONG, Yeming XIAN et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 611, 278-283(2022).

    [47] Bo CHEN, P N RUDD, Shuang YANG et al. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 48, 3842-3867(2019).

    [48] W SHOCKLEY, W T READ. Statistics of the recombinations of holes and electrons. Physical Review, 87, 835-842(1952).

    [49] L K ONO, Shengzhong LIU, Yabing QI. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angewandte Chemie International Edition, 59, 6676-6698(2020).

    [50] Zhenyi NI, Chunxiong BAO, Ye LIU et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 367, 1352-1358(2020).

    [51] Yuelin WEI, Bin RONG, Xia CHEN et al. Efficiency improvement of perovskite solar cell utilizing cystamine dihydrochloride for interface modification. Materials Research Bulletin, 155, 111949(2022).

    [52] Quanming GENG, Xiangrui JIA, Zhengyan HE et al. Interface engineering via amino acid for efficient and stable perovskite solar cells. Advanced Materials Interfaces, 9, 2201641(2022).

    [53] Yan LI, Siqi LI, Yujie SHEN et al. Multifunctional histidine cross-linked interface toward efficient planar perovskite solar cells. ACS Applied Materials & Interfaces, 14, 47872-47881(2022).

    [54] Bin WANG, Junjie MA, Zehua LI et al. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 15, 1069-1078(2021).

    [55] Quanzeng ZHANG, Shaobing XIONG, J ALI et al. Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 8, 5467-5475(2020).

    [56] Fang WAN, Lili KE, Yongbo YUAN et al. Passivation with crosslinkable diamine yields 0.1 V non-radiative VOC loss in inverted perovskite solar cells. Science Bulletin, 66, 417-420(2021).

    [57] Hua ZHONG, Zhongzhong JIA, Jinliang SHEN et al. Surface treatment of the perovskite via self-assembled dipole layer enabling enhanced efficiency and stability for perovskite solar cells. Applied Surface Science, 602, 154365(2022).

    [58] Shendong XU, Liying ZHANG, Boyuan LIU et al. Constructing of superhydrophobic and intact crystal terminal: Interface sealing strategy for stable perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 453, 139808(2023).

    [59] Jie XU, Jinfei DAI, Hua DONG et al. Surface-tension release in PTAA-based inverted perovskite solar cells. Organic Electronics, 100, 106378(2022).

    [60] Tianhao WU, L K ONO, R YOSHIOKA et al. Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy & Environmental Science, 15, 4612-4624(2022).

    [61] Zhen HE, Cai XU, Lianjie LI et al. Highly efficient and stable perovskite solar cells induced by novel bulk organosulfur ammonium. Materials Today Energy, 26, 101004(2022).

    [62] D P MCMEEKIN, P HOLZHEY, S O FURER et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nature Materials, 22, 73-83(2023).

    [63] Deguan LI, Tian XIA, Weiting LIU et al. Methylammonium thiocyanate seeds assisted heterogeneous nucleation for achieving high-performance perovskite solar cells. Applied Surface Science, 592, 153206(2022).

    [64] Tingting NIU, Lingfeng CHAO, Weiyin GAO et al. Ionic liquids-enabled efficient and stable perovskite photovoltaics: progress and challenges. ACS Energy Letters, 6, 1453-1479(2021).

    [65] M SHAHIDUZZAMAN, K YAMAMOTO, Y FURUMOTO et al. Ionic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Advances, 5, 77495-77500(2015).

    [66] Junhui RAN, Hao WANG, Wen DENG et al. Ionic liquid-tuned crystallization for stable and efficient perovskite solar cells. Solar RRL, 6, 2200176(2022).

    [67] C Y CHANG, C Y CHU, Y C HUANG et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Applied Materials & Interfaces, 7, 4955-4961(2015).

    [68] Lihua LI, Silong TU, Guofeng YOU et al. Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chemical Engineering Journal, 431, 133951(2022).

    [69] H W KROTO, J R HEATH, S C OBRIEN et al. C60: buckminsterfullerene. Nature, 318, 162-163(1985).

    [70] Feng ZHANG, Kai ZHU. Additive engineering for efficient and stable perovskite solar cells. Advanced Energy Materials, 10, 1902579(2019).

    [71] K KIM, Z WU, J HAN et al. Homogeneously miscible fullerene inducing vertical gradient in perovskite thin-film toward highly efficient solar cells. Advanced Energy Materials, 12, 2200877(2022).

    [72] Manda XIAO, Fuzhi HUANG, Wenchao HUANG et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie, 53, 9898-9903(2014).

    [73] H CHOI, Xiaoyuan LIU, H I KIM et al. A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Advanced Energy Materials, 11, 2003829(2021).

    [74] Junjun GUO, Jiaoguo SUN, Long HU et al. Indigo: A natural molecular passivator for efficient perovskite solar cells. Advanced Energy Materials, 12, 2200537(2022).

    [75] Zonghao LIU, L K ONO, Yabing QI. Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 46, 215-228(2020).

    [76] Hongbo MO, Dong WANG, Qian CHEN et al. Laser-assisted ultrafast fabrication of crystalline Ta-doped TiO2 for high-humidity-processed perovskite solar cells. ACS Applied Materials & Interfaces, 14, 15141-15153(2022).

    [77] Jidong DENG, Huifeng ZHANG, Kun WEI et al. Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells. Advanced Functional Materials, 32, 2209516(2022).

    [78] Hongru MA, Minhuan WANG, Yudi WANG et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chemical Engineering Journal, 442, 136291(2022).

    [79] M V RAJENDRAN, S GANESAN, V S MENON et al. Manganese dopant-induced isoelectric point tuning of ZnO electron selective layer enable improved interface stability in cesium-formamidinium-based planar perovskite solar cells. ACS Applied Energy Materials, 5, 6671-6686(2022).

    [80] Heyi YANG, Yunxiu SHEN, Rui ZHANG et al. Composition-conditioning agent for doped Spiro-OMeTAD to realize highly efficient and stable perovskite solar cells. Advanced Energy Materials, 12, 2202207(2022).

    [81] Dongdong XU, Zhiming GONG, Yue JIANG et al. Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nature Communications, 13, 7020(2022).

    [82] Jingsong SUN, Ningjun ZHANG, Jiarui WU et al. Additive engineering of the CuSCN hole transport layer for high-performance perovskite semitransparent solar cells. ACS Applied Materials & Interfaces, 14, 52223-52232(2022).

    [83] Tao LIU, Xi GUO, Yinjiang LIU et al. 4-trifluorophenylammonium iodide-based dual interfacial modification engineering toward improved efficiency and stability of SnO2-based perovskite solar cells. ACS Applied Materials & Interfaces, 15, 6777-6787(2023).

    [84] Xuemei YU, Qian ZHOU, Tian ZHENG et al. Interface engineering for achieving efficient and stable perovskite solar cells by Bphen-fullerene dimer. Chemical Engineering Journal, 452, 139412(2023).

    [85] Hui LI, Ping FU, Ruixue LU et al. Chloroformamidine hydrochloride as a molecular linker towards efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 11, 5039-5044(2023).

    [86] Xueyun WU, Yiting ZHENG, Jianghu LIANG et al. Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact via a nanostructured tin oxide layer. Materials Horizons, 10, 122-135(2023).

    [87] Xuan SHA, Jiang SHENG, Weichuang YANG et al. Interfacial defect passivation by using diethyl phosphate salts for high-efficiency and stable perovskite solar cells. Journal of Materials Chemistry A, 11, 6556-6564(2023).

    [88] Lu YANG, Hui ZHOU, Yuwei DUAN et al. 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Advanced Materials, 35, 2211545(2023).

    [89] Li YIN, Changzeng DING, Chenguang LIU et al. A multifunctional molecular bridging layer for high efficiency, hysteresis-free, and stable perovskite solar cells. Advanced Energy Materials, 13, 2301161(2023).

    [90] Chunlei CHEN, Yunfei ZHU, Deyu GAO et al. Molecular synergistic passivation for efficient perovskite solar cells and self-powered photodetectors. Small, 19, 2303200(2023).

    [91] Weiwei SUN, Kexiang WANG, Weifeng LIU et al. Bidirectional modification of buried interface reduces energy loss for planar perovskite solar cells with efficiency >23%. Solar RRL, 7, 2200991(2023).

    [92] Hanjun Zou, Huan Bi, Yongheng Chen et al. Functionalized polymer modified buried interface for enhanced efficiency and stability of perovskite solar cells. Nanoscale, 15, 2054-2060(2023).

    [93] Xuecong ZHANG, Yan ZHOU, Muyang CHEN et al. Novel bilayer SnO2 electron transport layers with atomic layer deposition for high-performance α-FAPbI3 perovskite solar cells. Small, 19, 2303254(2023).

    [94] Hui ZHOU, Lu YANG, Yuwei DUAN et al. 24.96%-efficiency FACsPbI3 perovskite solar cells enabled by an asymmetric 1,3-thiazole-2,4-diammonium. Advanced Energy Materials, 13, 2204372(2023).

    [95] Jingjin DONG, Suhao YAN, Haoyu CHEN et al. Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations. ACS Energy Letters, 8, 2772-2780(2023).

    [96] Dan ZHANG, Xiaofeng WANG, Tianfang TIAN et al. Multi-functional buried interface engineering derived from in-situ-formed 2D perovskites using π-conjugated liquid-crystalline molecule with aggregation-induced emission for efficient and stable NiOx-based inverted perovskite solar cells. Chemical Engineering Journal, 469, 143789(2023).

    [97] Zhengyan JIANG, Deng WANG, Jiayun SUN et al. Quenching detrimental reactions and boosting hole extraction via multifunctional NiOx/perovskite interface passivation for efficient and stable inverted solar cells. Small Methods, 202300241(2023).

    [98] Wenyu QIU, Yukun WU, Yichen WANG et al. Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%. Chemical Engineering Journal, 468, 143656(2023).

    [99] Weichuang YANG, Bin DING, Zedong LIN et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Advanced Materials, 35, 2302071(2023).

    [100] Hengda YAO, Yinyan XU, Guobing ZHANG et al. Multifunctional cross-linked polyurethane polymer as interface layer for efficient and stable perovskite solar cells. Advanced Functional Materials, 33, 2302161(2023).

    [101] Le LIU, Jin TANG, Saisai LI et al. Multi-site intermolecular interaction for in situ formation of vertically orientated 2D passivation layer in highly efficient perovskite solar cells. Advanced Functional Materials, 33, 2303038(2023).

    [102] Yinghui WU, Qihua LIANG, Hongwei ZHU et al. Molecularly tailored surface defect modifier for efficient and stable perovskite solar cells. Advanced Functional Materials, 33, 2302404(2023).

    [103] Kai ZHANG, Bin DING, Chenyue WANG et al. Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet. Nano-Micro Letters, 15, 138(2023).

    [104] Derun SUN, You GAO, H RAZA et al. Chemical reduction of iodine impurities and defects with potassium formate for efficient and stable perovskite solar cells. Advanced Functional Materials, 33, 2303225(2023).

    [105] Fei WANG, Kang ZHOU, Xiao LIANG et al. Revealing size-dependency of ionic liquid to assist perovskite film formation mechanism for efficient and durable perovskite solar cells. Small Methods, 202300210(2023).

    [106] Fangfang WANG, Mubai LI, Qiushuang TIAN et al. Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance. Nature Communications, 14, 3216(2023).

    [107] Jiakang ZHANG, Zhipeng LI, Fengjuan GUO et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angewandte Chemie International Edition, 62, e202305221(2023).

    [108] Nianci GUAN, Guo WU, Jian WANG et al. Improved power conversion efficiency and stability of perovskite solar cells induced by molecular interaction with poly(ionic liquid) additives. ACS Applied Materials & Interfaces, 15, 26872-26881(2023).

    [109] Hang SU, Jing ZHANG, Yingjie HU et al. Modulation on electrostatic potential of passivator for highly efficient and stable perovskite solar cells. Advanced Functional Materials, 33, 2213123(2023).

    [110] Rui ZHI, Chenquan YANG, M U ROTHMANN et al. Direct observation of intragrain defect elimination in FAPbI3 perovskite solar cells by two-dimensional PEA2PbI4. ACS Energy Letters, 8, 2620-2629(2023).

    [111] Lishuai HUANG, Hongsen CUI, Wenjun ZHANG et al. Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping. Advanced Materials, 35, 2301125(2023).

    [112] Li HE, Hongzhen SU, Zhengping LI et al. Multiple function synchronous optimization by PbS quantum dots for highly stable planar perovskite solar cells with efficiency exceeding 23%. Advanced Functional Materials, 33, 2213963(2023).

    [113] Jia SUN, Yinsheng GU, Yingwei LU et al. Synergistic strategy of rubidium chloride regulated SnO2 and 4-tert-butyl-benzylammonium iodide passivated MAxFA1-xPbI3 for efficient mixed-cation perovskite solar cells. Chemical Engineering Journal, 468, 143722(2023).

    [114] Tong YAN, Chenxi ZHANG, Shiqi LI et al. Multifunctional aminoglycoside antibiotics modified SnO2 enabling high efficiency and mechanical stability perovskite solar cells. Advanced Functional Materials, 33, 2302336(2023).

    [115] Y KIM, G KIM, E Y PARK et al. Alkylammonium bis(trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells. Energy & Environmental Science, 16, 2226-2238(2023).

    [116] Qian LAI, Rongshan ZHUANG, Kun ZHANG et al. A multifunctional liquid crystal as hole transport layer additive enhances efficiency and stability of perovskite solar cells. Angewandte Chemie International Edition, 62, e202305670(2023).

    [117] Nengxu LI, Xiuxiu NIU, Qi CHEN et al. Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 49, 8235-8286(2020).

    [118] C C BOYD, R CHEACHAROEN, T LEIJTENS et al. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 119, 3418-3451(2019).

    [119] F BRIVIO, C CAETANO, A WALSH. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1-xBrx)3 hybrid halide perovskite alloy. The Journal of Physical Chemistry Letters, 7, 1083-1087(2016).

    [120] S J YOON, S DRAGUTA, J S MANSER et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Letters, 1, 290-296(2016).

    [121] D J SLOTCAVAGE, H I KARUNADASA, M D MCGEHEE. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Letters, 1, 1199-1205(2016).

    [122] D Y SON, S G KIM, J Y SEO et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. Journal of the American Chemical Society, 140, 1358-1364(2018).

    [123] P TOLOUEINIA, H KHASSAF, A S AMIN et al. Moisture-induced structural degradation in methylammonium lead iodide perovskite thin films. ACS Applied Energy Materials, 3, 8240-8248(2020).

    [124] J M FROST, K T BUTLER, F BRIVIO et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Letters, 14, 2584-2590(2014).

    [125] Jing DOU, Yang BAI, Qi CHEN. Challenges of lead leakage in perovskite solar cells. Materials Chemistry Frontiers, 6, 2779-2789(2022).

    [126] Junming LI, Hailei CAO, Wenbin JIAO et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 11, 310(2020).

    [127] D R ORTEGA, D F G ESQUIVEL, T B AYALA et al. Cognitive impairment induced by lead exposure during lifespan: mechanisms of lead neurotoxicity. Toxics, 9, 23(2021).

    [128] G A LAMAS, F UJUETA, A NAVAS-ACIEN. Lead and cadmium as cardiovascular risk factors: the burden of proof has been met. Journal of the American Heart Association, 10, e018692(2021).

    [129] D KIM, H CHOI, W JUNG et al. Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells. Energy & Environmental Science, 16, 2045-2055(2023).

    [130] Kun ZHANG, Yang WANG, Mingquan TAO et al. Efficient inorganic vapor-assisted defects passivation for perovskite solar module. Advanced Materials, 35, 2211593(2023).

    [131] Yuan XU, Fengli LIU, Ruoshui LI et al. Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells. Chemical Engineering Journal, 461, 141895(2023).

    [132] Yehao DENG, Xiaopeng ZHENG, Yang BAI et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3, 560-566(2018).

    [133] Tongle BU, Jing LI, Hengyi LI et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372, 1327-1332(2021).

    [134] H EGGERS, F SCHACKMAR, T ABZIEHER et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Advanced Energy Materials, 10, 1903184(2019).

    [135] Changchun CHEN, Jianxin CHEN, Huchen HAN et al. Perovskite solar cells are based on screen-printed thin films. Nature, 612, 266-271(2022).

    [136] Fei YE, Han CHEN, Fengxian XIE et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high-cost-performance solar cells. Energy & Environmental Science, 9, 2295-2301(2016).

    [137] M A GREEN, E D DUNLOP, G SIEFER et al. Solar cell efficiency tables (Version 61). Progress in Photovoltaics, 31, 3-16(2022).

    Tools

    Get Citation

    Copy Citation Text

    Kun HE, Xiaoliang ZHAO, Jun WANG, Bixin LI, Bin DU, Yanlong WANG. Progress and Challenges of Efficient and Stable Halide-based Perovskite Solar Cells(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1116001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 12, 2023

    Accepted: Jun. 28, 2023

    Published Online: Dec. 22, 2023

    The Author Email: LI Bixin (jkylbxin@hnfnu.edu.cn), DU Bin (dubin@xpu.edu.cn), WANG Yanlong (wangyanlong@dicp.ac.cn)

    DOI:10.3788/gzxb20235211.1116001

    Topics