Acta Optica Sinica, Volume. 42, Issue 17, 1716001(2022)

Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications

Zhizhen Ye1,2、*, Fengzhi Wang1,2, Fang Chen2, and Yangdan Lu1
Author Affiliations
  • 1School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Institute of Wenzhou, Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang University, Wenzhou 325006, Zhejiang, China
  • show less
    References(181)

    [1] Klingshirn C. ZnO∶from basics towards applications[J]. Physica Status Solidi (b), 244, 3027-3073(2007).

    [2] Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review[J]. Materials, 7, 2833-2881(2014).

    [3] Bagnall D M, Chen Y F, Shen M Y et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE[J]. Journal of Crystal Growth, 184/185, 605-609(1998).

    [4] Xu W Z, Ye Z Z, Zeng Y J et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Applied Physics Letters, 88, 173506(2006).

    [5] Jiao S J, Zhang Z Z, Lu Y M et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Applied Physics Letters, 88, 031911(2006).

    [6] Liu W, Gu S L, Ye J D et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J]. Applied Physics Letters, 88, 092101(2006).

    [7] Zhang H H, Pan X H, Lu B et al. Mg composition dependent band offsets of Zn1-xMgxO/ZnO heterojunctions[J]. Physical Chemistry Chemical Physics, 15, 11231-11235(2013).

    [8] Wassner T A, Laumer B, Maier S et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy[J]. Journal of Applied Physics, 105, 023505(2009).

    [9] Park S H, Ahn D. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers[J]. Applied Physics Letters, 87, 253509(2005).

    [10] Zhang H H, Pan X H, Li Y et al. The role of band alignment in p-type conductivity of Na-doped ZnMgO: polar versus non-polar[J]. Applied Physics Letters, 104, 112106(2014).

    [11] Chen S S, Pan X H, Chen W et al. The role of beryllium in the band structure of MgZnO∶lifting the valence band maximum[J]. Applied Physics Letters, 105, 122112(2014).

    [12] Pan X H. Investigation on Sb doping p-ZnO and Zn1-xMgxO epitaxial films, ZnMgO/ZnO MQWs grown on Si substrates[D], 121-131(2010).

    [13] Choi Y S, Kang J W, Hwang D K et al. Recent advances in ZnO-based light-emitting diodes[J]. IEEE Transactions on Electron Devices, 57, 26-41(2010).

    [14] Gu X Q, Zhu L P, Ye Z Z et al. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates[J]. Applied Physics Letters, 91, 022103(2007).

    [15] Zhang H H, Pan X H, He H P et al. Temperature dependence of exciton localization in ZnO/Zn1-xMgxO multiple quantum wells with different barrier compositions[J]. Optics Communications, 318, 37-40(2014).

    [16] Chen S S, Xu C X, Pan X H et al. High internal quantum efficiency ZnO/ZnMgO multiple quantum wells prepared on GaN/sapphire templates for ultraviolet light emitting diodes[J]. Journal of Materials Chemistry C, 7, 6534-6538(2019).

    [17] Lotin A A, Novodvorsky O A, Zuev D A. Room-temperature stimulated emission in two-dimensional MgxZn1-xO/ZnO heterostructures under optical pumping[J]. Laser Physics Letters, 10, 055902(2013).

    [18] Janotti A, van de Walle C G. Fundamentals of zinc oxide as a semiconductor[J]. Reports on Progress in Physics, 72, 126501(2009).

    [19] Klingshirn C. ZnO∶material, physics and applications[J]. Chemphyschem, 8, 782-803(2007).

    [20] Guillén C, Herrero J. Optical, electrical and structural characteristics of Al∶ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum[J]. Vacuum, 84, 924-929(2010).

    [21] Wen L, Sahu B B, Kim H R et al. Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature[J]. Applied Surface Science, 473, 649-656(2019).

    [22] Zhu B L, Wang C C, Xie T et al. Highly transparent conductive ZnO films prepared by reactive RF sputtering with Zn/ZnO composite target[J]. Applied Physics A, 127, 668(2021).

    [23] Hassan A, Jin Y H, Chao F et al. Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO∶Ga thin films[J]. Journal of Applied Physics, 123, 161401(2018).

    [24] Bruncko J, Šutta P, Netrvalová M et al. Comparative study of ZnO thin film prepared by pulsed laser deposition-comparison of influence of different ablative lasers[J]. Vacuum, 138, 184-190(2017).

    [25] Zhao K, Xie J Y, Zhao Y D et al. Investigation on transparent, conductive ZnO∶Al films deposited by atomic layer deposition process[J]. Nanomaterials, 12, 172(2022).

    [26] Gao Z N, Banerjee P. Review article: atomic layer deposition of doped ZnO films[J]. Journal of Vacuum Science & Technology A, 37, 050802(2019).

    [27] Ponja S D, Sathasivam S, Parkin I P et al. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition[J]. Scientific Reports, 10, 638(2020).

    [28] Tsai C Y, Lai J D, Feng S W et al. Characterizations and growth of textured well-faceted ZnO films by low-pressure chemical vapor deposition on ITO glass substrates[J]. Superlattices and Microstructures, 111, 1073-1081(2017).

    [29] Kennedy O W, Coke M L, White E R et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction[J]. Materials Letters, 212, 51-53(2018).

    [30] Dai K, Ying M J, Lian J et al. Optical properties of polar thin films: ZnO (0001) and ZnO (000-1) on sapphire substrate[J]. Optical Materials, 94, 272-276(2019).

    [31] Shahid M U, Deen K M, Ahmad A et al. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization[J]. Applied Nanoscience, 6, 235-241(2016).

    [32] Morita Y, Ohtani N. Fabrication of aluminum and gallium codoped ZnO multilayer transparent conductive films by spin coating method and discussion about improving their performance[J]. Japanese Journal of Applied Physics, 57, 02CB03(2018).

    [33] Dimitrov D Z, Chen Z F, Marinova V et al. ALD deposited ZnO∶Al films on mica for flexible PDLC devices[J]. Nanomaterials, 11, 1011(2021).

    [34] Ajimsha R S, Das A K, Misra P et al. Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition[J]. Journal of Alloys and Compounds, 638, 55-58(2015).

    [35] Giri P, Chakrabarti P. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications[J]. Superlattices and Microstructures, 93, 248-260(2016).

    [36] Gong L, Lu J G, Ye Z Z. Room-temperature growth and optoelectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputtering[J]. Solar Energy Materials and Solar Cells, 94, 1282-1285(2010).

    [37] Nian Q, Zhang M Y, Schwartz B D et al. Ultraviolet laser crystallized ZnO∶Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency[J]. Applied Physics Letters, 104, 201907(2014).

    [38] Lyubchyk A, Vicente A, Alves P U et al. Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature[J]. Physica Status Solidi (a), 213, 2317-2328(2016).

    [39] Mahmood K, Samaa B M. Influence of annealing treatment on structural, optical, electric, and thermoelectric properties of MBE-grown ZnO[J]. Journal of Experimental and Theoretical Physics, 126, 766-771(2018).

    [40] Yamada Y, Inoue S, Kikuchi H et al. Resistivity reduction in Ga-doped ZnO films with a barrier layer that prevents Zn desorption[J]. Thin Solid Films, 657, 50-54(2018).

    [41] Ma J G, Lin D, Li P et al. ZnO transparent conducting thin films codoped with anions and cations[J]. Chinese Science Bulletin, 65, 2678-2690(2020).

    [42] Zhang W, Gan J, Li L Q et al. Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration[J]. Materials Science in Semiconductor Processing, 74, 147-153(2018).

    [43] Ye Z Z, Tang J F. Study of transparent conducting indium-doped ZnO films prepared by DC reactive magnetron sputtering[J]. Acta Optica Sinica, 8, 448-453(1988).

    [44] Ye Z Z, Tang J F. Transparent conducting indium doped ZnO films by DC reactive S-gun magnetron sputtering[J]. Applied Optics, 28, 2817-2819(1989).

    [45] Lei P, Chen X T, Yan Y et al. Transparent and conductive IZO films: oxygen and discharge voltage controlled sputtering growth and properties[J]. Vacuum, 195, 110645(2022).

    [46] Tsai D C, Chang Z C, Kuo B H et al. Thickness dependence of the structural, electrical, and optical properties of amorphous indium zinc oxide thin films[J]. Journal of Alloys and Compounds, 743, 603-609(2018).

    [47] Lu J G, Ye Z Z, Zeng Y J et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 100, 073714(2006).

    [48] Lu J G, Fujita S, Kawaharamura T et al. Carrier concentration dependence of band gap shift in n-type ZnO∶Al films[J]. Journal of Applied Physics, 101, 083705(2007).

    [49] Gong L, Ye Z Z, Lu J G et al. Highly transparent conductive and near-infrared reflective ZnO∶Al thin films[J]. Vacuum, 84, 947-952(2010).

    [50] Gu X Q, Zhu L P, Cao L et al. Optical and electrical properties of ZnO∶Al thin films synthesized by low-pressure pulsed laser deposition[J]. Materials Science in Semiconductor Processing, 14, 48-51(2011).

    [51] Wang Y P, Lu J G, Bie X et al. Transparent conductive Al-doped ZnO thin films grown at room temperature[J]. Journal of Vacuum Science & Technology A, 29, 031505(2011).

    [52] Jiang Q J, Lu J G, Yuan Y L et al. Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO∶Al films by post thermal and plasma treatments[J]. Materials Letters, 106, 125-128(2013).

    [53] Jiang Q J, Lu J G, Ye Z Z. Plasma-induced surface textures of ZnO∶Al transparent conductive films[J]. Vacuum, 111, 42-47(2015).

    [54] Agura H, Suzuki A, Matsushita T et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 445, 263-267(2003).

    [55] Ma Q B, Ye Z Z, He H P et al. Structural, electrical, and optical properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Journal of Crystal Growth, 304, 64-68(2007).

    [56] Ma Q B, Ye Z Z, He H P et al. Preparation and characterization of transparent conductive ZnO∶Ga films by DC reactive magnetron sputtering[J]. Materials Characterization, 59, 124-128(2008).

    [57] Ma Q B, Ye Z Z, He H P et al. Effects of deposition pressure on the properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Materials Science in Semiconductor Processing, 10, 167-172(2007).

    [58] Gong L, Lu J G, Ye Z Z. Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates[J]. Solar Energy Materials and Solar Cells, 94, 937-941(2010).

    [59] Ma Q B, Ye Z Z, He H P et al. Influence of Ar/O2 ratio on the properties of transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering[J]. Materials Letters, 61, 2460-2463(2007).

    [60] Bie X, Lu J G, Gong L et al. Transparent conductive ZnO∶Ga films prepared by DC reactive magnetron sputtering at low temperature[J]. Applied Surface Science, 256, 289-293(2009).

    [61] Ma Q B, Ye Z Z, He H P et al. Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO∶Ga films[J]. Scripta Materialia, 58, 21-24(2008).

    [62] Ma Q B, Ye Z Z, He H P et al. Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering[J]. Vacuum, 82, 9-14(2007).

    [63] Gong L, Lu J G, Ye Z Z. Study on the structural, electrical, optical, adhesive properties and stability of Ga-doped ZnO transparent conductive films deposited on polymer substrates at room temperature[J]. Journal of Materials Science: Materials in Electronics, 24, 148-152(2013).

    [64] Mo G K, Liu J H, Lin G T et al. Characterization of low resistivity Ga-doped ZnO thin films on Si substrates prepared by pulsed laser deposition[J]. Materials Research Express, 6, 106421(2019).

    [65] Cao L, Zhu L P, Chen W F et al. Preparation and thermal stability of F-doped ZnO transparent conducting thin films[J]. Optical Materials, 35, 1293-1296(2013).

    [66] Cao L, Zhu L P, Jiang J et al. Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition[J]. Solar Energy Materials and Solar Cells, 95, 894-898(2011).

    [67] Pham A T T, Ngo N M, Le O K T et al. High-mobility sputtered F-doped ZnO films as good-performance transparent-electrode layers[J]. Journal of Science: Advanced Materials and Devices, 6, 446-452(2021).

    [68] Khuili M, El Hallani G, Fazouan N et al. First-principles calculation of (Al, Ga) co-doped ZnO[J]. Computational Condensed Matter, 21, e00426(2019).

    [69] Mallick A, Basak D. Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs[J]. Progress in Materials Science, 96, 86-110(2018).

    [70] Wang Y F, Song J M, Zhang H R et al. High optoelectronic performance of ZnO films co-doped with ternary functional elements of F, Al and Mg[J]. Journal of Alloys and Compounds, 822, 153688(2020).

    [71] Wang K L, Xin Y Q, Zhao J F et al. High transmittance in IR region of conductive ITO/AZO multilayers deposited by RF magnetron sputtering[J]. Ceramics International, 44, 6769-6774(2018).

    [72] Kang D W, Kuk S H, Ji K S et al. Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications[J]. Solar Energy Materials and Solar Cells, 95, 138-141(2011).

    [73] Jiang Q J, Lu J G, Yuan Y L et al. Enhancement of the light trapping by double-layered surface texture of ITO/AZO and AZO/AZO transparent conductive films[J]. Materials Letters, 123, 14-18(2014).

    [74] Gong L, Lu J G, Ye Z Z. Conductive Ga doped ZnO/Cu/Ga doped ZnO thin films prepared by magnetron sputtering at room temperature for flexible electronics[J]. Thin Solid Films, 519, 3870-3874(2011).

    [75] Wang Y P, Lu J G, Bie X et al. Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature[J]. Applied Surface Science, 257, 5966-5971(2011).

    [76] Lu J G, Bie X, Wang Y P et al. Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature[J]. Journal of Vacuum Science & Technology A, 29, 03A115(2011).

    [77] Gong L, Lu J G, Ye Z Z. Transparent conductive Ga-doped ZnO/Cu multilayers prepared on polymer substrates at room temperature[J]. Solar Energy Materials and Solar Cells, 95, 1826-1830(2011).

    [78] Huang J J, Wang Y P, Lu J G et al. Transparent conductive Al-doped ZnO/Cu bilayer films grown on polymer substrates at room temperature[J]. Chinese Physics Letters, 28, 255-258(2011).

    [79] Chen W H, Chou C Y, Li B J et al. Conductive and transparent properties of ZnO/Cu/ZnO sandwich structure[J]. Journal of Electronic Materials, 50, 779-785(2021).

    [80] Manzen I, Yoshimura Y, Matsubara K et al. Improvement of characteristics of flexible Al-doped ZnO/Ag/Al-doped ZnO transparent conductive film using silver[J]. Journal of Vacuum Science & Technology B, 38, 022205(2020).

    [81] Lin Q J, Zhang F Z, Zhao N et al. Influence of annealing temperature on optical properties of sandwiched ZnO/metal/ZnO transparent conductive thin films[J]. Micromachines, 13, 296(2022).

    [82] Liu X N, Gao J, Gong J H et al. Optoelectronic properties of an AZO/Ag multilayer employed as a flexible electrode[J]. Ceramics International, 47, 5671-5676(2021).

    [83] Jang C, Jiang Q J, Lu J G et al. Structural, optical and electrical properties of Ga doped ZnO/Cu grid/Ga doped ZnO transparent electrodes[J]. Journal of Materials Science & Technology, 31, 1108-1110(2015).

    [85] Wang C T, Ting C C, Kao P C et al. Enhanced optical, electrical, and mechanical characteristics of ZnO/Ag grids/ZnO flexible transparent electrodes[J]. Journal of Applied Physics, 122, 085501(2017).

    [86] Jang C, Ye Z Z, Lü J G. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature[J]. Journal of Semiconductors, 36, 42-45(2015).

    [87] Li F S, Lin Z X, Zhang B B et al. Fabrication of flexible conductive graphene/Ag/Al-doped zinc oxide multilayer films for application in flexible organic light-emitting diodes[J]. Organic Electronics, 14, 2139-2143(2013).

    [88] Yu S H, Zhao L, Liu R C et al. Performance enhancement of Cu-based AZO multilayer thin films via graphene fence engineering for organic solar cells[J]. Solar Energy Materials and Solar Cells, 183, 66-72(2018).

    [89] Wang P, Chen Y, Hu Y et al. Preparation and stability of AZO/AgNWs/AZO composite film[J]. China Ceramics, 57, 38(2021).

    [90] Duan Y H, Duan Y, Chen P et al. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film[J]. Nanoscale Research Letters, 10, 90(2015).

    [91] Han X P, Huang Y, Wang J M et al. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect[J]. Composites Part B: Engineering, 229, 109458(2022).

    [92] Zhang L Q, Yang R, Chen K et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters, 207, 62-65(2017).

    [93] Das R, Das H S, Nandi P K et al. Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell[J]. Applied Physics A, 124, 631(2018).

    [94] Jeong J A, Park Y S, Kim H K. Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics[J]. Journal of Applied Physics, 107, 023111(2010).

    [95] Chen X B, Xu G Y, Zeng G et al. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode[J]. Advanced Materials, 32, e1908478(2020).

    [96] Zhou Z X, Zhang Y L, Chen X L et al. Innovative wide-spectrum Mg and Ga-codoped ZnO transparent conductive films grown via reactive plasma deposition for Si heterojunction solar cells[J]. ACS Applied Energy Materials, 3, 1574-1584(2020).

    [97] Zhao X, Li M, Jiang L P et al. Preparation of device-level ZnO-covered silver nanowires films and their applications as sub-electrode for polymer solar cells[J]. Frontiers in Chemistry, 9, 683728(2021).

    [98] Jiang Q J, Lu J G, Zhang J et al. Texture surfaces and etching mechanism of ZnO∶Al films by a neutral agent for solar cells[J]. Solar Energy Materials and Solar Cells, 130, 264-271(2014).

    [99] Gong L, Liu Y Z, Gu X Q et al. Study on the thermal stability of Ga-doped ZnO thin film: a transparent conductive layer for dye-sensitized TiO2 nanoparticles based solar cells[J]. Materials Science in Semiconductor Processing, 26, 276-281(2014).

    [100] Shin Y H, Cho C K, Kim H K. Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels[J]. Thin Solid Films, 548, 641-645(2013).

    [101] Dimitrov D, Tsai C L, Petrov S et al. Atomic layer-deposited Al-doped ZnO thin films for display applications[J]. Coatings, 10, 539(2020).

    [102] Chen D, Lu J G, Lu R K et al. High-performance GaN-based LEDs with AZO/ITO thin films as transparent contact layers[J]. IEEE Transactions on Electron Devices, 64, 2549-2555(2017).

    [103] Chen D, Lü J G, Huang J Y et al. Performances of GaN-based LEDs with AZO films as transparent electrodes[J]. Journal of Inorganic Materials, 28, 649-652(2013).

    [104] Zhang P, Zhang W, Wang J Y et al. The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al∶ZnO heterojunctions[J]. Scientific Reports, 7, 4425(2017).

    [105] Yan R L, Takahashi T, Zeng H et al. Robust and electrically conductive ZnO thin films and nanostructures: their applications in thermally and chemically harsh environments[J]. ACS Applied Electronic Materials, 3, 2925-2940(2021).

    [106] Wang J P, Wang N N, Jin Y Z et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes[J]. Advanced Materials, 27, 2311-2316(2015).

    [107] Liu Y, Cui J Y, Du K et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures[J]. Nature Photonics, 13, 760-764(2019).

    [108] Huang H W, Liu M, Li J et al. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence[J]. Nanoscale, 9, 104-108(2017).

    [109] Xu X L, He H P, Li J et al. Embedded two-dimensional perovskite nanoplatelets with air-stable luminescence[J]. ACS Applied Materials & Interfaces, 11, 8436-8442(2019).

    [110] He H P, Yu Q Q, Li H et al. Exciton localization in solution-processed organolead trihalide perovskites[J]. Nature Communications, 7, 10896(2016).

    [111] Gan L, He H P, Li S X et al. Distinctive excitonic recombination in solution-processed layered organic-inorganic hybrid two-dimensional perovskites[J]. Journal of Materials Chemistry C, 4, 10198-10204(2016).

    [112] Fang Z S, He H P, Gan L et al. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites[J]. Advanced Science, 5, 1800736(2018).

    [113] Li J, Gan L, Fang Z S et al. Bright tail states in blue-emitting ultrasmall perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 8, 6002-6008(2017).

    [114] Li J, Yu Q Q, Lu B et al. Ambience dependent photoluminescence reveals the localization and trap filling effects in CH3NH3PbI3-xClx perovskite films[J]. Journal of Materials Chemistry C, 5, 54-58(2017).

    [115] Li J, Yu Q Q, Gan L et al. Perovskite light-emitting devices with a metal-insulator-semiconductor structure and carrier tunnelling[J]. Journal of Materials Chemistry C, 5, 7715-7719(2017).

    [116] Si J J, Liu Y, Wang N N et al. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations[J]. Nano Research, 10, 1329-1335(2017).

    [117] He Z F, Liu Y, Yang Z L et al. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites[J]. ACS Photonics, 6, 587-594(2019).

    [118] Cui J Y, Liu Y, Deng Y Z et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets[J]. Science Advances, 7, eabg8458(2021).

    [119] Si J J, Liu Y, He Z F et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X=Br, I) nanoplates with controlled thicknesses[J]. ACS Nano, 11, 11100-11107(2017).

    [120] Li J, Si J J, Gan L et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials & Interfaces, 8, 32978-32983(2016).

    [121] Jiang L, Fang Z S, Lou H R et al. Achieving long carrier lifetime and high optical gain in all-inorganic CsPbBr3 perovskite films via top and bottom surface modification[J]. Physical Chemistry Chemical Physics, 21, 21996-22001(2019).

    [122] Li J, Zhou W, Jiang L et al. Highly compact and smooth all-inorganic perovskite films for low threshold amplified spontaneous emission from additive-assisted solution processing[J]. Journal of Materials Chemistry C, 7, 15350-15356(2019).

    [123] Lu G C, Chen Z H, Fang Z S et al. Mixed halide perovskite films by vapor anion exchange for spectrally stable blue stimulated emission[J]. Small, 17, e2103169(2021).

    [124] Akkerman Q A, Rainò G, Kovalenko M V et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 17, 394-405(2018).

    [125] Rudd P N, Huang J S. Metal ions in halide perovskite materials and devices[J]. Trends in Chemistry, 1, 394-409(2019).

    [126] Ou Q D, Li C, Wang Q K et al. Recent advances in energetics of metal halide perovskite interfaces[J]. Advanced Materials Interfaces, 4, 1600694(2017).

    [127] Wang Y, Sun H D. All-inorganic metal halide perovskite nanostructures: from photophysics to light-emitting applications[J]. Small Methods, 2, 1700252(2018).

    [128] Li C, Wei J, Sato M et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies[J]. ACS Applied Materials & Interfaces, 8, 11526-11531(2016).

    [129] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [130] Kim H P, Kim J, Kim B S et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite[J]. Advanced Optical Materials, 5, 1600920(2017).

    [131] Wang H L, Zhao X F, Zhang B H et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films[J]. Journal of Materials Chemistry C, 7, 5596-5603(2019).

    [132] Karlsson M, Yi Z Y, Reichert S et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nature Communications, 12, 361(2021).

    [133] Dong Y T, Wang Y K, Yuan F L et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J]. Nature Nanotechnology, 15, 668-674(2020).

    [134] Bi C H, Yao Z W, Sun X J et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes[J]. Advanced Materials, 33, e2006722(2021).

    [135] Wu Y, Wei C T, Li X M et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J]. ACS Energy Letters, 3, 2030-2037(2018).

    [136] Akkerman Q A, Motti S G, Kandada A R S et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control[J]. Journal of the American Chemical Society, 138, 1010-1016(2016).

    [137] Yang D, Zou Y T, Li P L et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes[J]. Nano Energy, 47, 235-242(2018).

    [138] Hoye R L Z, Lai M L, Anaya M et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes[J]. ACS Energy Letters, 4, 1181-1188(2019).

    [139] Ren Z W, Wang K, Sun X W et al. Strategies toward efficient blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 31, 2100516(2021).

    [140] Tam H W, Leung T L, Sun W T et al. Phase control for quasi-2D blue emitters by spacer cation engineering[J]. Journal of Materials Chemistry C, 8, 11052-11060(2020).

    [141] Yuan S, Wang Z K, Xiao L X et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J]. Advanced Materials, 31, e1904319(2019).

    [142] Jiang Y Z, Qin C C, Cui M H et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 10, 1868(2019).

    [143] Hu J, Oswald I W H, Stuard S J et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites[J]. Nature Communications, 10, 1276(2019).

    [144] Chen Z M, Zhang C Y, Jiang X F et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film[J]. Advanced Materials, 29, 1603157(2017).

    [145] Wang Y K, Ma D X, Yuan F L et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters[J]. Nature Communications, 11, 3674(2020).

    [146] Worku M, He Q Q, Xu L J et al. Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes[J]. ACS Applied Materials & Interfaces, 12, 45056-45063(2020).

    [147] Peng L C, Geng J, Ai L S et al. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness[J]. Nanotechnology, 27, 335604(2016).

    [148] Zhang F, Xiao C T, Li Y F et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy[J]. Frontiers in Chemistry, 6, 444(2018).

    [149] Deng J D, Xun J, Qin Y C et al. Blue-emitting NH4+-doped MAPbBr3 perovskite quantum dots with near unity quantum yield and super stability[J]. Chemical Communications, 56, 11863-11866(2020).

    [150] Kong X B, Wu Y Q, Xu F et al. Ultrasmall CsPbBr3 quantum dots with bright and wide blue emissions[J]. Physica Status Solidi: Rapid Research Letters, 15, 2100134(2021).

    [151] Shynkarenko Y, Bodnarchuk M I, Bernasconi C et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes[J]. ACS Energy Letters, 4, 2703-2711(2019).

    [152] Zheng X P, Yuan S, Liu J K et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes[J]. ACS Energy Letters, 5, 793-798(2020).

    [153] Pan G C, Bai X, Xu W et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices[J]. ACS Applied Materials & Interfaces, 12, 14195-14202(2020).

    [154] Song J Z, Li J H, Li X M et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 27, 7162-7167(2015).

    [155] Xun J, Deng J D, Shen W et al. Rapid synthesis of highly stable all-inorganic perovskite nanocrystals exhibiting strong blue luminescence[J]. Journal of Alloys and Compounds, 872, 159612(2021).

    [156] Park Y R, Kim H H, Eom S et al. Luminance efficiency roll-off mechanism in CsPbBr3-xClx mixed-halide perovskite quantum dot blue light-emitting diodes[J]. Journal of Materials Chemistry C, 9, 3608-3619(2021).

    [157] Ochsenbein S T, Krieg F, Shynkarenko Y et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals[J]. ACS Applied Materials & Interfaces, 11, 21655-21660(2019).

    [158] Shao H, Zhai Y, Wu X F et al. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation[J]. Nanoscale, 12, 11728-11734(2020).

    [159] Zhang F, Zhang X, Wang C H et al. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes[J]. Nano Energy, 79, 105486(2021).

    [160] Zhang B B, Yuan S, Ma J P et al. General mild reaction creates highly luminescent organic-ligand-lacking halide perovskite nanocrystals for efficient light-emitting diodes[J]. Journal of the American Chemical Society, 141, 15423-15432(2019).

    [161] Ye F H, Zhang H J, Wang P et al. Spectral tuning of efficient CsPbBrxCl3-x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates[J]. Chemistry of Materials, 32, 3211-3218(2020).

    [162] Shin Y S, Yoon Y J, Lee K T et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals[J]. ACS Applied Materials & Interfaces, 11, 23401-23409(2019).

    [163] Hou S C, Gangishetty M K, Quan Q M et al. Efficient blue and white perovskite light-emitting diodes via Manganese doping[J]. Joule, 2, 2421-2433(2018).

    [164] Yang F, Chen H T, Zhang R et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals[J]. Advanced Functional Materials, 30, 1908760(2020).

    [165] Todorović P, Ma D X, Chen B et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals[J]. Advanced Optical Materials, 7, 1901440(2019).

    [166] Meng F Y, Liu X Y, Cai X Y et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method[J]. Nanoscale, 11, 1295-1303(2019).

    [167] Pan J Y, Zhao Z H, Fang F et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes[J]. Advanced Optical Materials, 8, 2001494(2020).

    [168] Yao E P, Yang Z L, Meng L et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites[J]. Advanced Materials, 29, 1606859(2017).

    [169] Chen F, Xu L M, Li Y et al. Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals[J]. Journal of Materials Chemistry C, 8, 13445-13452(2020).

    [170] Chen F, Liu Y L, Salerno M. Dispersing solvent effect on halide perovskite nanocrystals-based films and devices[J]. Journal of Materials Science, 57, 1902-1913(2022).

    [171] Li G R, Rivarola F W R, Davis N J L K et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J]. Advanced Materials, 28, 3528-3534(2016).

    [172] Gangishetty M K, Hou S C, Quan Q M et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes[J]. Advanced Materials, 30, e1706226(2018).

    [173] Shin Y S, Yoon Y J, Heo J et al. Functionalized PFN-X (X=Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes[J]. ACS Applied Materials & Interfaces, 12, 35740-35747(2020).

    [174] Ma D X, Todorović P, Meshkat S et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes[J]. Journal of the American Chemical Society, 142, 5126-5134(2020).

    [175] Wang C H, Han D B, Wang J H et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes[J]. Nature Communications, 11, 6428(2020).

    [176] Kim Y C, An H J, Kim D H et al. High‐performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents[J]. Advanced Functional Materials, 31, 2005553(2021).

    [177] Vashishtha P, Ng M, Shivarudraiah S B et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers[J]. Chemistry of Materials, 31, 83-89(2019).

    [178] Shen Y, Shen K C, Li Y Q et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 31, 2006736(2021).

    [179] Yantara N, Jamaludin N F, Febriansyah B et al. Designing the perovskite structural landscape for efficient blue emission[J]. ACS Energy Letters, 5, 1593-1600(2020).

    [180] Li Z C, Chen Z M, Yang Y C et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%[J]. Nature Communications, 10, 1027(2019).

    [181] Hu H W, Salim T, Chen B B et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes[J]. Scientific Reports, 6, 33546(2016).

    Tools

    Get Citation

    Copy Citation Text

    Zhizhen Ye, Fengzhi Wang, Fang Chen, Yangdan Lu. Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications[J]. Acta Optica Sinica, 2022, 42(17): 1716001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 10, 2022

    Accepted: Jul. 14, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Ye Zhizhen (yezz@zju.edu.cn)

    DOI:10.3788/AOS202242.1716001

    Topics