Optics and Precision Engineering, Volume. 32, Issue 13, 2091(2024)
Additive regulated electrochemical microfluidic beam 3D printing
[1] J X XU, S S AO, W D LIU et al. Fabricating carbon nanotube fiber joints by meniscus-confined electrochemical deposition method. Materials Research Express, 6, 1150h2(2019).
[2] Z B MA, K F ZHANG, Z H REN et al. Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties. Journal of Alloys and Compounds, 828, 154350(2020).
[3] W Y LI, K YANG, S YIN et al. Solid-state additive manufacturing and repairing by cold spraying: a review. Journal of Materials Science & Technology, 34, 440-457(2018).
[4] L HIRT, A REISER, R SPOLENAK et al. Additive manufacturing of metal structures at the micrometer scale. Advanced Materials, 29, 1604211(2017).
[5] C Z FAN, Z D SHAN, G S ZOU et al. Interfacial bonding mechanism and mechanical performance of continuous fiber reinforced composites in additive manufacturing. Chinese Journal of Mechanical Engineering, 34, 21(2021).
[6] A COHEN, R CHEN, U FRODIS et al. Microscale metal additive manufacturing of multi-component medical devices. Rapid Prototyping Journal, 16, 209-215(2010).
[7] S K SEOL, D KIM, S LEE et al. Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small, 11, 3896-3902(2015).
[8] A B KAMARAJ, V SHAW, M M SUNDARAM. Novel fabrication of un-coated super-hydrophobic aluminum via pulsed electrochemical surface modification. Procedia Manufacturing, 1, 892-903(2015).
[9] M M SUNDARAM, A B KAMARAJ, V S KUMAR. Mask-less electrochemical additive manufacturing: a feasibility study. Journal of Manufacturing Science and Engineering, 137(2015).
[10] C Y WANG, J C LIN, Y C CHANG et al. Fabrication of Cu-Zn alloy micropillars by potentiostatic localized electrochemical deposition. Journal of the Electrochemical Society, 166, E252-E262(2019).
[11] A REISER, M LINDÉN, P ROHNER et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nature Communications, 10, 1853(2019).
[12] Y L CHEN, Y T WANG, Y Y WANG et al. Meniscus-confined electrodeposition of metallic microstructures with in-process monitoring of surface qualities. Precision Engineering, 70, 34-43(2021).
[13] S DARYADEL, A BEHROOZFAR, S R MORSALI et al. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano Letters, 18, 208-214(2018).
[14] W WANG, P M MING, X M ZHANG et al. Additive manufacturing of three-dimensional intricate microfeatures by electrolyte-column localized electrochemical deposition. Additive Manufacturing, 50, 102582(2022).
[15] [15] 李权. 聚二硫二丙烷磺酸钠对铜电沉积过程的表面作用机理研究[J]. 四川师范大学学报(自然科学版), 1999, 22(1): 71-73. doi: 10.3969/j.issn.1001-8395.1999.01.014LIQ. Study on surface action mechanism of sodium polydithio-dipropyl sulfonate for copper electrodeposition[J]. Journal of Sichuan Normal University (Natural Science), 1999, 22(1): 71-73.(in Chinese). doi: 10.3969/j.issn.1001-8395.1999.01.014
[16] M GU, L HUANG, F Z YANG et al. Influence of chloride and PEG on electrochemical nucleation of copper. Transactions of the IMF, 80, 183-186(2002).
[17] [17] 辜敏, 鲜晓红. (110)晶面全择优取向Cu镀层的制备及其条件优化[J]. 物理化学学报, 2006, 22(3): 378-382. doi: 10.3866/pku.whxb20060325GUM, XIANX H. The preparation of copper electrodeposits with (110) lattice plane fully preferred orientation[J]. Acta Physico-Chimica Sinica, 2006, 22(3): 378-382.(in Chinese). doi: 10.3866/pku.whxb20060325
[18] Y JIN, Y F SUI, L WEN et al. Competitive adsorption of PEG and SPS on copper surface in acidic electrolyte containing Cl–. Journal of the Electrochemical Society, 160, D20-D27(2012).
[19] [19] 李荻, 李松梅. 电化学原理[M]. 4版. 北京: 北京航空航天大学出版社, 2021.LID, LIS M. Electrochemical Principle[M]. 4th ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2021.(in Chinese)
[20] H RUEFER. Living Without Mathematical Statistics: Accurate Analysis, Diagnosis, and Prognosis Based on the Taguchi Method(2019).
[21] M EVANS. Optimisation of Manufacturing Processes(2022).
[22] [22] 王吉, 章鹏, 张天润, 等. 高频激光对化学气相沉积金刚石的大切深实验[J]. 光学 精密工程, 2022, 30(1): 89-95. doi: 10.37188/ope.20223001.0089WANGJ, ZHANGP, ZHANGT R, et al. Experiments of high frequency laser cutting of\rchemical vapor deposition diamond with large cutting depth[J]. Opt. Precision Eng., 2022, 30(1): 89-95.(in Chinese). doi: 10.37188/ope.20223001.0089
Get Citation
Copy Citation Text
Yong LIU, Shengyang XU, Lixiaoxue CHEN, Wanlu LI, Pengfei DONG. Additive regulated electrochemical microfluidic beam 3D printing[J]. Optics and Precision Engineering, 2024, 32(13): 2091
Category:
Received: Mar. 13, 2024
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: LIU Yong (rzliuyong@163.com)