Optics and Precision Engineering, Volume. 32, Issue 13, 2091(2024)

Additive regulated electrochemical microfluidic beam 3D printing

Yong LIU1...2,*, Shengyang XU1, Lixiaoxue CHEN1, Wanlu LI1 and Pengfei DONG1 |Show fewer author(s)
Author Affiliations
  • 1College of Mechanical, Electrical&Information Engineering, Shandong University, Weihai264209, China
  • 2Associated Engineering Research Center of Mechanics & Mechatronic Equipment, Shandong University, Weihai6409, China
  • show less
    Figures & Tables(17)
    Morphology of microfluidic beam deposition with different proportions of additives
    Finite element simulation model of microbeam electrolysis system
    Numerical simulation of microbeam electrolysis system deposition of copper columns for 40 minutes(legend indicating the flow velocity of the liquid beam and arrow indicating the current vector)
    Deposition velocity distribution curves of cathode surface with different deposition heights
    Schematic diagram of electrochemical 3D printing experimental platform
    Mean value of factor data and signal-to-noise ratio(SNR)
    Response surface model of factors A-SPS, B-PEG, C-Cl- and D-current amplitude to surface roughness
    Surface roughness with different process parameters
    Helix structure printed with optimal parameters
    Spiral structure printed without additives
    • Table 1. Single additive variable deposition morphology and formation reasons

      View table
      View in Article

      Table 1. Single additive variable deposition morphology and formation reasons

      SPS/PEG/Cl-Morphology characteristicsFormation reasons
      Excess SPSDark red or black, non-glossy coating in low current density regions; numerous pits in high current density regionsExcess SPS inhibits copper crystallization
      Low SPSNon-glossy in low current density regions, not burnt in high current density regions, small glossy areaInsufficient SPS on the cathode surface to form a glossy area
      Excess PEGGlossy in high and medium current density regions, rough in low current density regionsPEG cannot inhibit hydrogen evolution in low current density regions
      Low PEGPoor leveling and glossiness in high and medium current density regionsThe consumption rate of PEG molecules during electrodeposition is less than the diffusion rate of the leveling agent from the solution to the electrode surface
      Excess Cl-Red deposition morphology in high, medium, and low current density regions"Chlorine bridge" effect between copper ions and chloride ions increases polarization current
      Low Cl-Sponge-like burnt appearance in high current density regionsLack of CuCl- film formation on the cathode metal surface
    • Table 2. Domain definitions and boundary conditions for microbeam electrolysis system simulation

      View table
      View in Article

      Table 2. Domain definitions and boundary conditions for microbeam electrolysis system simulation

      Boundary conditionBoundaryProperty
      Anode surface2,8Φs,ext=3 V
      Cathode surface5Φs,ext=0 V
      Insulation3,7-
      Specified normal grid velocity5Vn
      Zero normal grid velocity4,6-
      Inlet1U0=1 m/s
      Outlet4,6-
      Steady-state free surface3,7-
    • Table 3. Value of controllable factors on different levels

      View table
      View in Article

      Table 3. Value of controllable factors on different levels

      FactorsLevel 1Level 2Level 3
      SPS Concentration/10-6104070
      PEG Concentration/10-650100150
      Cl- Concentration/10-6306090
      CuSO4/(g·L-14070100
      H2SO4/(g·L-1150180210
    • Table 4. Orthogonal test result created by Minitab

      View table
      View in Article

      Table 4. Orthogonal test result created by Minitab

      No.SPS/10-6PEG/10-6Cl-/10-6CuSO4/(g·L-1H2SO4/(g·L-1Surface-ness/Sa
      11050304015021
      21050307018022.68
      310503010021020.04
      410100604018011.28
      510100607021010.68
      6101006010015012.12
      710150904021022.44
      810150907015023.64
      9101509010018022.44
      1040100904015014.06
      1140100907018016.53
      12401009010021013.11
      1340150304018017.765
      1440150307021018.715
      15401503010015016.815
      164050604021016.91
      174050607015015.58
      1840506010018013.775
      1970150604015020.88
      2070150607018022.08
      21701506010021018.48
      227050904018017.76
      237050907021021.36
      2470509010015022.68
      2570100304021012.96
      267050307015016.44
      2770503010018021.36
    • Table 5. Response surface analysis factors and levels

      View table
      View in Article

      Table 5. Response surface analysis factors and levels

      FactorCodeConversion formula between encoded and real valuesLevel
      Encoded valueReal value-101
      SPS/10-6AaA=(a-40)/10304050
      PEG/10-6BbB=(b-100)/2080100120
      Cl-/10-6CcC=(c-60)/20406080
      Current amplitude /mADdD=(d-7.5)/2.557.510
    • Table 6. Response surface analysis scheme and test results

      View table
      View in Article

      Table 6. Response surface analysis scheme and test results

      No.SPS/10-6PEG/10-6Cl-/10-6

      Current

      amplitude

      /mA

      Surface

      roughness

      /μm

      No.SPS/10-6PEG/10-6Cl-/10-6

      Current

      amplitude

      /mA

      Surface roughness

      /μm

      140100607.51.171530100407.515.74
      250100807.55.59164010040105.24
      3408060108.93174012060102.54
      45010060510.87184080407.515.24
      53080607.516.5419401206056.04
      63010060109.762040120807.58.34
      74010080106.842130120607.58.88
      840120407.54.062230100807.511.34
      9401004057.52235010060105.56
      10301006058.242440100607.50.07
      11401008056.312550100407.511.24
      1250120607.58.51265080607.511.89
      13408060512.452740100607.50.69
      144080807.57.42
    • Table 7. Results of variance analysis of surface roughness

      View table
      View in Article

      Table 7. Results of variance analysis of surface roughness

      SourceDfMean squareF-valueP-value
      Model1433.2213.04<0.000 1**
      A-SPS123.809.340.010 0*
      B-PEG198.0438.47<0.000 1**
      C-Cl-114.085.530.036 7*
      D-Current amplitude118.085.530.036 7*
      AB14.841.900.193 3
      AC10.422 50.165 80.691 1
      AD111.564.540.054 6
      BC136.6014.360.002 6**
      BD10.010 00.003 90.951 1
      CD12.250.882 80.366 0
      A²1207.5081.42<0.000 1**
      B²1113.4744.52<0.000 1**
      C²178.0330.62<0.000 1**
      D²121.878.580.012 6*
      Lack of fit test103.009.880.095 3
    Tools

    Get Citation

    Copy Citation Text

    Yong LIU, Shengyang XU, Lixiaoxue CHEN, Wanlu LI, Pengfei DONG. Additive regulated electrochemical microfluidic beam 3D printing[J]. Optics and Precision Engineering, 2024, 32(13): 2091

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 13, 2024

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: LIU Yong (rzliuyong@163.com)

    DOI:10.37188/OPE.20243213.2091

    Topics