Chinese Optics Letters, Volume. 21, Issue 2, 023601(2023)
Understanding wide field-of-view flat lenses: an analytical solution [Invited] Editors' Pick
[1] W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian. Metasurface enabled wide-angle Fourier lens. Adv. Mater., 30, 1706368(2018).
[2] Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, T. S. Mayer. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci. Rep., 4, 7511(2014).
[3] G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, B. Lee. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).
[4] Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater., 6, 1800592(2018).
[5] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902(2017).
[6] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).
[7] D. Tang, L. Chen, J. Liu, X. Zhang. Achromatic metasurface doublet with a wide incident angle for light focusing. Opt. Express, 28, 12209(2020).
[8] Z. Li, C. Wang, Y. Wang, X. Lu, Y. Guo, X. Li, X. Ma, M. Pu, X. Luo. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle. Opt. Express, 29, 9991(2021).
[9] Z. Huang, M. Qin, X. Guo, C. Yang, S. Li. Achromatic and wide-field metalens in the visible region. Opt. Express, 29, 13542(2021).
[10] Y. Liu, Q.-Y. Yu, Z.-M. Chen, H.-Y. Qiu, R. Chen, S.-J. Jiang, X.-T. He, F.-L. Zhao, J.-W. Dong. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106(2021).
[11] D. A. Buralli, G. M. Morris. Design of a wide field diffractive landscape lens. Appl. Opt., 28, 3950(1989).
[12] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. Agarwal, H. Zhang, J. Hu, T. Gu. A single-layer panoramic metalens with >170° diffraction-limited field of view(2019).
[13] J. Engelberg, C. Zhou, N. Mazurski, J. Bar-David, A. Kristensen, U. Levy. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361(2020).
[14] A. Martins, K. Li, J. Li, H. Liang, D. Conteduca, B.-H. V. Borges, T. F. Krauss, E. R. Martins. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073(2020).
[15] F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, P. Gao, H. Yu, M. Gu, X. Luo. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).
[16] C.-Y. Fan, C.-P. Lin, G.-D. J. Su. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci. Rep., 10, 15677(2020).
[17] A. Kalvach, Z. Szabó. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B, 33, A66(2016).
[18] T. Grulois, G. Druart, N. Guérineau, A. Crastes, H. Sauer, P. Chavel. Extra-thin infrared camera for low-cost surveillance applications. Opt. Lett., 39, 3169(2014).
[19] M. Pu, X. Li, Y. Guo, X. Ma, X. Luo. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express, 25, 31471(2017).
[20] C. Chen, P. Chen, J. Xi, W. Huang, K. Li, L. Liang, F. Shi, J. Shi. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv., 10, 115213(2020).
[21] W.-P. Zhang, F. Liang, Y.-R. Su, K. Liu, M.-J. Tang, L. Li, Z.-W. Xie, W.-M. Liu. Numerical simulation research of wide-angle beam steering based on catenary shaped ultrathin metalens. Opt. Commun., 474, 126085(2020).
[22] Y. Liu, J. Zhang, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, C. Alonso-Ramos, D. Melati. Broadband behavior of quadratic metalenses with a wide field of view(2022).
[23] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. M. Agarwal, H. Zhang, J. Hu, T. Gu. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429(2020).
[24] P. Wang, N. Mohammad, R. Menon. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep., 6, 21545(2016).
[25] P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, R. Menon. A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics. Prog. Photovoltaics Res. Appl., 23, 1073(2015).
[26] G. Kim, J. A. Domínguez-Caballero, R. Menon. Design and analysis of multi-wavelength diffractive optics. Opt. Express, 20, 2814(2012).
[27] P. Wang, R. Menon. Optical microlithography on oblique and multiplane surfaces using diffractive phase masks. J. Micro/Nanolithogr., 14, 023507(2015).
[28] P. Wang, R. Menon. Computational spectrometer based on a broadband diffractive optic. Opt. Express, 22, 14575(2014).
[29] M. Born, E. Wolf. Principle of Optics(1991).
[30] S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, M. Kang. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express, 28, 31932(2020).
[31] L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).
[32] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196(2019).
[33] M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).
[34] F. Yang, S. An, M. Y. Shalaginov, H. Zhang, C. Rivero-Baleine, J. Hu, T. Gu. Design of broadband and wide-field-of-view metalenses. Opt. Lett., 46, 5735(2021).
Get Citation
Copy Citation Text
Fan Yang, Sensong An, Mikhail Y. Shalaginov, Hualiang Zhang, Juejun Hu, Tian Gu, "Understanding wide field-of-view flat lenses: an analytical solution [Invited]," Chin. Opt. Lett. 21, 023601 (2023)
Category: Nanophotonics, Metamaterials, and Plasmonics
Received: Jun. 19, 2022
Accepted: Aug. 30, 2022
Posted: Aug. 31, 2022
Published Online: Oct. 21, 2022
The Author Email: Juejun Hu (hujuejun@mit.edu), Tian Gu (gutian@mit.edu)