Acta Photonica Sinica, Volume. 51, Issue 12, 1210001(2022)
Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint
[1] J M BIOUCAS-DIAS, A PLAZA, G CAMPS-VALLS et al. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1, 6-36(2013).
[2] A F H GOETZ, S L USTIN, M E SCHAEPMAN. Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sensing of Environment, 113, 5-16(2009).
[3] R M WILLETT, M F DUARTE, M A DAVENPORT et al. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Processing Magazine, 31, 116-126(2013).
[4] Zhicheng JIA, Yunyan XUE, Lei CHEN et al. Blind separation algorithm for hyperspectral image based on the denoising reduction and the bat optimization. Acta Photonica Sinica, 45, 0511001(2016).
[5] J V MANJÓN, P COUPÉ, L MARTÍ-BONMATÍ et al. Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31, 192-203(2010).
[6] K DABOV, A FOI, V KATKOVNIK et al. Image restoration by sparse 3D transform-domain collaborative filtering. Image Processing: Algorithms and Systems VI, 68, 62-73(2008).
[7] D LETEXIER, S BOURENNANE. Noise removal from hyperspectral images by multidimensional filtering. IEEE Transactions on Geoscience and Remote Sensing, 46, 2061-2069(2008).
[8] Xuefeng LIU, S BOURENNANE, C FOSSATI. Nonwhite noise reduction in hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 9, 368-372(2011).
[9] A HEO, J H LEE, E J CHOI et al. Noise reduction of hyperspectral images using a joint bilateral filter with fused images, 8048, 641-646(2011).
[10] F BOLLENBECK, A BACKHAUS, U SEIFFERT. A multivariate wavelet-PCA denoising-filter for hyperspectral images, 1-4(2011).
[11] D GOLDFARB, Z QIN. Robust low-rank tensor recovery: models and algorithms. SIAM Journal on Matrix Analysis and Applications, 35, 225-253(2014).
[12] R A HARSHMAN, M E LUNDY. Parafac: parallel factor analysis. Computational Statistics & Data Analysis, 18, 39-72(1994).
[13] L R TUCKER. Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279-311(1966).
[14] M E KILMER, K BRAMAN, N HAO et al. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM Journal on Matrix Analysis and Applications, 34, 148-172(2013).
[15] Yubang ZHENG, Tingzhu HUANG, Xile ZHAO et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Transactions on Geoscience and Remote Sensing, 58, 734-749(2019).
[16] Haiyan FAN, Yunjin CHEN, Yulan GUO et al. Hyperspectral image restoration using low-rank tensor recovery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4589-4604(2017).
[17] Minghua WANG, Qiang WANG, J CHANUSSOT. L0 gradient regularized low-rank tensor model for hyperspectral image denoising, 1-6(2019).
[18] Xiaoce WU, Bingyin ZHOU, Qingyun REN et al. Multispectral image denoising using sparse and graph laplacian tucker decomposition. Computational Visual Media, 6, 319-331(2020).
[19] Yi CHANG, Luxin YAN, Houzhang FANG et al. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Transactions on Image Processing, 24, 1852-1866(2015).
[20] Wei HE, Hongyan ZHANG, Lianpei ZHANG et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Transactions on Geoscience and Remote Sensing, 54, 178-188(2015).
[21] Haijin ZENG, Xiaozhen XIE, Haojie CUI et al. Hyperspectral image restoration via global L1-2 spatial--spectral total variation regularized local low-rank tensor recovery. IEEE Transactions on Geoscience and Remote Sensing, 59, 3309-3325(2020).
[22] Qiangqiang YUAN, Liangpei ZHANG, Huanfeng SHEN. Hyperspectral image denoising employing a spectral--spatial adaptive total variation model. IEEE Transactions on Geoscience and Remote Sensing, 50, 3660-3677(2012).
[23] S TAKEYAMA, S ONO, I KUMAZAWA. A constrained convex optimization approach to hyperspectral image restoration with hybrid spatio-spectral regularization. Remote Sensing, 12, 3541(2020).
[24] Yao WANG, Jiangjun PENG, Qian ZHAO et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243(2017).
[25] Wei HE, Hongyan ZHANG, Huanfeng SHEN et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial-spectral total variation. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 11, 713-729(2018).
[26] Yong CHEN, Wei HE, N YOKOYA et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition. IEEE transactions on cybernetics, 50, 3556-3570(2019).
[27] M K NG, R H CHAN, C TANGW. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM Journal on Scientific Computing, 21, 851-866(1999).
[28] Shuhang GU, Lei ZHANG, Wangmeng ZUO et al. Weighted nuclear norm minimization with application to image denoising, 2862-2869(2014).
[29] Hongyan ZHANG, Wei HE, Liangpei ZHANG et al. Hyperspectral image restoration using low-rank matrix recovery. IEEE Transactions on Geoscience and Remote Sensing, 52, 4729-4743(2013).
[30] Yuan XIE, Yanyun QU, Dacheng TAO et al. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization. IEEE Transactions on Geoscience and Remote Sensing, 54, 4642-4659(2016).
[31] Wei HE, Hongyan ZHANG, Liangpei ZHANG et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Transactions on Geoscience and Remote Sensing, 54, 178-188(2015).
[32] M MAGGIONI, V KATKOVNIK, K EGIAZARIAN et al. Nonlocal transform-domain fifilter for volumetric data denoising and reconstruction. IEEE Transactions on Image Processing, 22, 119-133(2012).
[33] Yi PENG, Deyu MENG, Zongben XU et al. Decomposable nonlocal tensor dictionary learning for multispectral image denoising, 2949-2956(2014).
[34] Jianfeng CAI, E CANDES, Zuowei SHEN. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20, 1956-1982(2010).
[35] Zhouchen LIN, Minming CHEN, Yi MA. The augmented lagrange multiplier method for exact recovery of corrupted lowrank matrices. arXiv preprint(2010).
[36] T G KOLDA, B W BADER. Tensor decompositions and applications. Siam Review, 51, 455-500(2009).
[37] Yuli YUAN, Junrui LV, Xuegang LUO. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty. Journal of Applied Optics, 42, 283(2021).
[38] Sheng LIU, Haijin ZENG, Wenfeng KONG et al. Hyperspectral images restoration based on frequency-weighted tensor nuclear norm. Journal of Image and Graphics, 26, 1910-1925(2021).
[39] Zhongmei WANG, Xiaomei YANG, Xingfa GU. Hyperspectral images denoising based on tensor group sparse representation. Acta Geodaetica et Cartographica Sinica, 46, 614-622(2017).
[40] Haijin ZENG, Jiawei JIANG, Jiajia ZHAO et al. L1-2 Spectral-spatial total variation regularized hyperspectral image denoising. Acta Photonica Sinica, 48, 1010002(2019).
Get Citation
Copy Citation Text
Pengdan ZHANG, Jifeng NING. Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint[J]. Acta Photonica Sinica, 2022, 51(12): 1210001
Category:
Received: Mar. 11, 2022
Accepted: Jun. 7, 2022
Published Online: Feb. 6, 2023
The Author Email: NING Jifeng (njf@nwafu.edu.cn)