Acta Photonica Sinica, Volume. 51, Issue 12, 1210001(2022)

Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint

Pengdan ZHANG and Jifeng NING*
Author Affiliations
  • College of Information Engineering,Northwest Agriculture & Forestry University,Yangling,Shaanxi 712100,China
  • show less
    Figures & Tables(11)
    Schematic of LRHSSTV denoising model
    Denoising results on band 50 of simulated data in noise case 1
    Denoising results on band 120 of simulated data in noise case 5
    Comparison diagram of PSNR and SSIM values of each band in the case of simulated data
    Denoising results on band 109 of real-word data
    Denoising results on band 207 of real-word data
    Band 109 of HYDICE dataset vertical mean profile before and after denoising via different methods
    Band 207 of HYDICE dataset vertical mean profile before and after denoising via different methods
    The change diagram of MPSNR and MSSIM value as the value of r3 increases
    The change diagram of MPSNR and MSSIM value as the number of iterations increases
    • Table 1. Qualitative evaluation results of various methods on simulated data under different noise cases

      View table
      View in Article

      Table 1. Qualitative evaluation results of various methods on simulated data under different noise cases

      CaseLevelIndexNoiseWNNMLRMRBM4DTDLWSNMLRTVLRTDTVLRHSSTV
      Case1G=0.1

      MPSNR/dB

      MSSIM

      ERGAS

      20.002 7

      0.3674

      233.861 0

      32.693 3

      0.852 0

      55.655 3

      36.445 3

      0.941 1

      35.805 3

      38.743 6

      0.976 3

      28.040 5

      38.15

      0.966 4

      30.52

      37.557 6

      0.948 3

      32.304 5

      38.787 6

      0.986 3

      27.474 5

      40.909 9

      0.980 4

      23.121 3

      47.714 9

      0.998 6

      11.351 2

      Case2

      G=0.1

      + Deadline

      MPSNR/dB

      MSSIM

      ERGAS

      19.392 4

      0.360 1

      255.100 1

      32.880 6

      0.851 3

      58.394 4

      35.575 6

      0.919 1

      38.844 4

      35.105 3

      0.939 1

      110.403 9

      33.228 9

      0.874 3

      111.356 6

      36.171 5

      0.941 2

      43.897 6

      38.048 8

      0.982 8

      49.101 2

      40.545 6

      0.988 5

      23.547 1

      46.610 4

      0.991 8

      12.621 8

      Case3

      G=0.75

      P=0.15

      MPSNR/dB

      MSSIM

      ERGAS

      13.090 6

      0.178 3

      519.682 4

      32.365 3

      0.878 6

      59.712 3

      36.403 3

      0.934 5

      36.046 6

      28.596 6

      0.840 1

      90.298 3

      27.504 5

      0.907 6

      102.085 5

      38.146 4

      0.955 1

      29.523 7

      39.533 7

      0.986 6

      35.025 4

      41.080 9

      0.991 0

      21.883 3

      46.428 9

      0.997 9

      13.834 7

      Case4

      G=0.75

      P=0.15

      + Deadline

      MPSNR/dB

      MSSIM

      ERGAS

      12.923 9

      0.175 5

      529.5936

      32.396 3

      0.887 7

      59.103 4

      35.767 7

      0.931 6

      39.990 5

      27.026 3

      0.817 3

      128.111 3

      26.546 7

      0.846 5

      120.545 3

      36.637 5

      0.948 8

      46.317 8

      38.744 7

      0.982 6

      55.346 3

      40.725 6

      0.990 6

      22.908 1

      45.442 5

      0.997 8

      14.560 8

      Case5

      P+G

      Random

      + Deadline

      MPSNR/dB

      MSSIM

      ERGAS

      13.810 5

      0.204 4

      500.610 2

      31.432 2

      0.845 5

      66.423 1

      33.725 4

      0.895 1

      50.161 3

      27.947 3

      0.820 1

      120.954 7

      24.345 7

      0.593 1

      157.757 5

      35.027 9

      0.928 5

      51.334 5

      36.543 3

      0.974 2

      72.525 7

      38.835 5

      0.985 9

      28.663 4

      43.567 2

      0.996 9

      18.339 4

      Case6

      P+G

      Random

      + Deadline

      + Stripe

      MPSNR/dB

      MSSIM

      ERGAS

      13.736 9

      0.202 1

      503.698 6

      29.9873

      0.843 1

      82.433 2

      33.425 6

      0.891 8

      52.624 3

      27.539 3

      0.806 0

      126.285 7

      23.345 6

      0.558 3

      174.287 9

      33.886 6

      0.926 1

      53.294 6

      36.357 5

      0.973 6

      72.056 3

      38.636 5

      0.985 2

      29.823 3

      43.151 9

      0.996 6

      19.716 9

    Tools

    Get Citation

    Copy Citation Text

    Pengdan ZHANG, Jifeng NING. Hyperspectral Image Denoising Based on Hybrid Space-spectral Total Variation and Double Domain Low-rank Constraint[J]. Acta Photonica Sinica, 2022, 51(12): 1210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 11, 2022

    Accepted: Jun. 7, 2022

    Published Online: Feb. 6, 2023

    The Author Email: NING Jifeng (njf@nwafu.edu.cn)

    DOI:10.3788/gzxb20225112.1210001

    Topics