Acta Photonica Sinica, Volume. 51, Issue 10, 1016002(2022)
Preparation Technology and Application of Vanadium Dioxide Thin Films(Invited)
[1] F J MORIN. Oxides which show a metal-to-insulator transition at the neel temperature. Physical Review Letters, 3, 34-36(1959).
[2] M M QAZILBASH, M BREHM, B G CHAE et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science, 318, 1750-1753(2007).
[3] J M BOOTH, P S CASEY. Anisotropic structure deformation in the VO2 metal-insulator transition. Physical Review Letters, 103, 086402(2009).
[4] T C KOETHE, Z HU, M W HAVERKORT et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO2. Physical Review Letters, 97, 116402(2006).
[5] M H LEE. Thermochromic glazing of windows with better luminous solar transmittance. Solar Energy Materials & Solar Cells, 71, 537-540(2002).
[6] Z L HUANG, S H CHEN, C H LV et al. Infrared characteristics of VO2 thin films for smart window and laser protection applications. Physical Review Letters, 101, 191905(2012).
[7] S SHEN, H YI, H MA et al. A novel structural VO2 micro-optical switch. Optical and Quantum Electronics volume, 35, 1351-1355(2003).
[8] G LI, D G XIE, H ZHONG et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nature Communications, 13, 1729(2022).
[9] Z REM, J Y XU, J M LIU et al. Active and smart terahertz electro-optic modulator based on VO2 structure. ACS Applied Materials & Interfaces, 14, 26923-26930(2022).
[10] M T KUNNAMBETH, T M SINDHU, F ANJALI et al. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. Journal of Electroanalytical Chemistry, 878, 114644(2020).
[11] H KATZKE, P TOLEDANO, W DEPMEIER. Theory of morphotropic transformations in vanadium oxides. Physical Review B, 68, 024109(2003).
[12] A KAMPER, I HAHNDORF, M BAERNS. A molecular mechanics study of the adsorption of ethane and propane on V2O5(001) surfaces with oxygen vacancies. Topics in Catalysis, 11, 77-84(2000).
[13] M TAHA, S WALIA, T AHMED et al. Insulator-metal transition in substrate-independent VO2 thin film for phase-change devices. Scentific Reports, 7, 17899(2017).
[14] T D MANNING, I P PARKIN, M E PEMBLE et al. Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide. Chemistry of Materials, 16, 744-749(2004).
[15] H YOON, M CHOI, T W LIM et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nature Materials, 15, 1113(2016).
[16] R XIE, C T BUI, B VARGHESE et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams. Advanced Functional Materials, 21, 1602-1607(2011).
[17] J LU, H LIU, S DENG et al. Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. Nanoscale, 6, 7619-7627(2014).
[18] J ZHENG, Y ZHANG, Q WANG et al. Hydrothermal encapsulation of VO2(A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Internaational Journal of Inorganic Chemistry, 47, 452-464(2018).
[19] L A NOSIKOVA, A E BARANCHIOV, A D YAPRYNTSEV et al. Selective hydrothermal synthesis of [(CH3)2NH2]V3O7, VO2(D), and V2O3 in the presence of N,N-Dimethylformamide. Russian Journal of Inorganic Chemistry, 65, 467-474(2020).
[20] V EYERT. The metal-insulator transitions of VO2: a band theoretical approach. Annalen Der Physik, 11, 650-704(2002).
[21] J B GOODENOUGH. The two components of the crystallographic transition in VO2. Journal of Solid State Chemistry, 3, 490-500(1971).
[22] M F JAGER, C OTT, P M KRAUS et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proceedings of the National Academy of the United States of America, 114, 9558-9563(2017).
[23] T YAO, X ZHANG, Z SUN et al. Understanding the nature of the kinetic process in a VO2 metal-insulator transition. Physical Review Letters, 105, 226405(2010).
[24] D KUCHARCZYK, T NIKLEWSKI. Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature. Journal of Applied Crystallography, 12, 370-373(1979).
[25] F BETEILLE, L MAZEROLLES, J LIVAGE. Microstructure and metal-insulating transition of VO2 thin films. Materials Research Bulletin, 34, 2177-2184(1999).
[26] O A NOVODVORSKY, L S PARSHINA, O D KHRAMOVA et al. Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films. Semiconductors, 49, 563-569(2015).
[27] T C CHANG, X CAO, L R DEDON et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. Nano Energy, 44, 256-264(2018).
[28] D LOULOUDAKIS, D VERNARDOU, E SPANAKIS et al. Effect of O2 flow rate on the thermochromic performance of VO2 coatings grown by atmospheric pressure CVD. Physica Status Solidi, 12, 856-860(2015).
[29] T D MANNING, I P PARKIN, C BLACKMAN et al. APCVD of thermochromic vanadium dioxide thin films—solid solutions V2-xMxO2 (M=Mo, Nb) or composites VO2 : SnO2. Journal of Materials Chemistry, 15, 4560-4566(2005).
[30] J M BIAN, M H WANG, H J SUN et al. Thickness-modulated metal-insulator transition of VO2 film grown on sapphire substrate by MBE. Journal of Materials Science, 51, 6149-6155(2016).
[31] J ZOU, L XIAO, L ZHU et al. One-step rapid hydrothermal synthesis of monoclinic VO2 nanoparticles with high precursors concentration. Journal of Sol-Gel Science and Technology, 91, 302-309(2019).
[32] M F VOSTAKOLA, S M MIRKAZEMI, B E YEKTA. Structural, morphological, and optical properties of W‐doped VO2 thin films prepared by sol‐gel spin coating method. International Journal of Applied Ceramic Technology, 16, 943-950(2019).
[33] V THÉRY, A BOULLE, A CRUNTEANU et al. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Physical Review B, 93, 184106(2016).
[34] X ZUO, L L SUN, A Y WANG et al. Rearch progress on preparation of amphorphous carbon thin films by high power impulse magnetron sputtering. SurfaceTechnology, 48, 53-63(2019).
[35] A AIJAZ, Y X JI, J MONTERO et al. Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering. Solar Energy Materials and Solar Cells, 149, 137-144(2016).
[36] S LOQUAI, B BALOUKAS, O ZABEIDA et al. HiPIMS-deposited thermochromic VO2 films on polymeric substrates. Solar Energy Materials and Solar Cells, 155, 60-69(2016).
[37] S LOQUAI, B BALOUKAS, J E KLEMBERG-SAPIEHA et al. HiPIMS-deposited thermochromic VO2 films with high environmental stability. Solar Energy Materials and Solar Cells, 160, 217-224(2017).
[38] J HOUSKA, D KOLENATY, J VLCEK et al. Significant improvement of the performance of ZrO2/V1-W O2/ZrO2 thermochromic coatings by utilizing a second-order interference. Solar Energy Materials and Solar Cells, 191, 365-371(2019).
[39] M LESKELÄ, M RITALA. Atomic Layer Deposition (ALD): from precursors to thin film structures. Thin Solid Films, 409, 138-146(2002).
[40] R L PUURUNEN. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. Journal of Applied Physics, 97, 121301(2005).
[41] N F QUACKENBUSH, J W TASHMAN, J A MUNDY et al. Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. Nano Letters, 13, 4857-4861(2013).
[42] A P PETER, K MARTENS, G RAMPELBERG et al. Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control. Advanced Functional Materials, 25, 679-686(2015).
[43] M J TADJER, V D WHEELER, B P DOWNEY et al. Temperature and electric field induced metal-insulator transition in atomic layer deposited VO2 thin films. Solid-State Electronics, 136, 30-35(2017).
[44] V P PRASADAM, B DEY, S BULOU et al. Study of VO2 thin film synthesis by atomic layer deposition. Materials Today Chemistry, 12, 332-342(2019).
[45] X R LV, Y Z CAO, L YAN et al. Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor. Applied Surface Science, 396, 214-220(2017).
[46] G D MARTIN, S D HOATH, I M HUTCHINGS. Inkjet printing-the physics of manipulating liquid jets and drops. Journal of Physics Conference, 105, 012001(2008).
[47] H N JI, D Q LIU, H F CHENG et al. Large area infrared thermochromic VO2 nanoparticle films prepared by inkjet printing technology. Solar Energy Materials and Solar Cells, 194, 235-243(2019).
[48] M VASEEM, S ZHEN, S YANG et al. Development of VO2-nanoparticle-based metal-insulator transition electronic ink. Advanced Electronic Materials, 5, 1800949(2019).
[49] R D DEEGAN, O BAKAJIN, T F DUPONT et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389, 827-829(1997).
[50] R S INGOLE, B J LOKHANDE. Nanoporous vanadium oxide network prepared by spray pyrolysis. Materials Letters, 168, 95-98(2016).
[51] S GAVALAS, E GAGAOUDAKIS, D KATERINOPOULOU et al. Vanadium oxide nanostructured thin films prepared by Aerosol Spray Pyrolysis for gas sensing and thermochromic applications. Materials Science in Semiconductor Processing, 89, 116-120(2019).
[52] M BENKAHOUL, M K ZAYED, A SOLIEMAN et al. Spray deposition of V4O9 and V2O5 thin films and post-annealing formation of thermochromic VO2. Journal of Alloys and Compounds, 704, 760-768(2017).
[53] A E HAIMEUR, A MRIGAL, H BAKKALI et al. Optical, magnetic, and electronic properties of nanostructured VO2 thin films grown by spray pyrolysis: DFT first principle study. Journal of Superconductivity and Novel Magnetism, 33, 511-517(2019).
[55] A HOHNHOLZ, K OBATA, Y NAKAJIMA et al. Hybrid UV laser direct writing of UV-curable PDMS thin film using aerosol jet printing. Applied Physics A, 125, 1-6(2019).
[56] S Y LI, G A NIKLASSON, C G GRANQVIST. Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met. Thin Solid Films, 520, 3823-3828(2012).
[57] S W LONG, X CAO, G Y SUN et al. Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability. Applied Surface Science, 441, 764-772(2018).
[58] L YANG, S ZHANG, X LI et al. VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M)·0.25H2O. Materials Letters, 2011, 308-311(2018).
[59] L T KANG, Y F GAO, Z F ZHANG et al. Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution. Journal of Physical Chemistry C, 114, 1901-1911(2010).
[60] S LYSENKO, V VIKHNIN, G ZHANG et al. Insulator-to-metal phase transformation of VO2 films upon femtosecond laser excitation. Journal of Electronic Materials, 35, 1866-1872(2006).
[61] J BAILAT, E VALLATSAUVAIN, A VALLAT et al. Simulation of the growth dynamics of amorphous and microcrystalline silicon. Journal of Non-Crystalline Solids, 338, 32-36(2004).
[62] H H HSIEH, C C WU. Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes. Applied Physics Letters, 91, 013502(2007).
[63] Y LAN, G YANG, Y LI et al. Optical properties of V2O5 thin films on different substrates and femtosecond laser-induced phase transition studied by pump–probe method. Nanomaterials, 12, 330(2022).
[64] G GARRY, O DURAND, LORDEREAU A Structural. Structural,electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes. Thin Solid Films, 453, 427-430(2004).
[65] Y ZHAO, J HWAN LEE, Y ZHU et al. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. Journal of Applied Physics, 111, 053533(2012).
[67] C WU, X ZHANG, J DAI et al. Direct hydrothermal synthesis of monoclinic VO(2M)single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 21, 4509-4517(2011).
[68] Y W LEE, B KIM, J LIM et al. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Applied Physics Letters, 92, 162903(2008).
[69] T DRISCOLL, J QUINN, M D VENTRA et al. Current oscillations in vanadium dioxide: evidence for electrically triggered percolation avalanches. Physical Review B, 86, 094203(2012).
[70] Z W LIU, Y LU, D X HOU. In Research progress of VO2 thin film as laser protecting material, 107100(2018).
[71] H N JI, D Q LIU, C Y ZHANG et al. VO2/ZnS core-shell nanoparticle for the adaptive infrared camouflage application with modified color and enhanced oxidation resistance. Solar Energy Materials and Solar Cells, 176, 1-8(2018).
[72] X CHEN, F WANG, J XU. Preparation of VO2(B) nanoflake with glycerol as reductant agent and its catalytic application in the aerobic oxidation of benzene to phenol. Topics in Catalysis, 54, 1016-1023(2011).
[73] X CAO, T CHANG, Z SHAO et al. Challenges and opportunities toward real application of VO2-based smart glazing. Matter, 2, 862-881(2020).
[74] M LI, S MAGDASSI, Y F GAO et al. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small, 13, 1701147(2017).
[75] A TAYLOR, I PARKIN, N NOOR et al. A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing. Optics Express, 21, A750-A764(2013).
[76] T CHANG, X CAO, N LI et al. Facile and low-temperature fabrication of thermochromic Cr2O3/VO2 smart coatings: enhanced solar modulation ability, high luminous transmittance and uv-shielding function. ACS Applied Materias & Interfaces, 9, 26029-26037(2017).
[77] Y S YANG, Y ZHOU, F B Y CHIANG et al. Tungsten doped VO2/microgels hybrid thermochromic material and its smart window application. RSC Advances, 7, 7758-7762(2017).
[78] S CHEN, Z W WANG, H REN et al. Gate-controlled VO2 phase transition for high-performance smart windows. Science Advcances, 5, eaav6815(2019).
[79] R ZHANG, B XIANG, M FENG et al. Design of VO2-based photoactuators for smart windows. Journal of Materials Science, 55, 10689-10698(2020).
[80] P U JEPSEN, B M FISCHER, A THOMAN et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Physical Review B, 74, 205103(2006).
[81] H LIU, Y X FAN, H G CHEN et al. Active tunable terahertz resonators based on hybrid vanadium oxide metasurface. Optics Communications, 445, 277-283(2019).
[82] X S CHEN, J S LI. Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure. Acta Physica Sinica, 69, 027801(2020).
[83] H LI, J YU, Z CHEN. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterial. Chinese Journal of Lasers, 47, 0903001(2020).
[84] F KRAUSZ, M I STOCKMAN. Attosecond metrology: from electron capture to future signal processing. Nature Photonics, 8, 205-213(2014).
[85] S M BOHAICHUK, M M PELELLA, Y F SUN et al. VO2 switch for electrostatic discharge protection. IEEE Electron Device Letters, 41, 292-295(2020).
[86] A THOMAS, P SAVALIYA, K KUMAR et al. Au nanowire-VO2 spacer-Au film based optical switches.. Journal of the Optical Society of America B, 35, 1687-1697(2018).
[87] J SCHALCH, Y J CHI, Y H HE et al. Broadband electrically tunable VO2‑Metamaterial terahertz switch with suppressed reflection. Microwave and Optical Technology Letters, 62, 2782-2790(2020).
[88] Y P ZHANG, J R D DEBORD, C J OCONNOR et al. Solid-state coordination chemistry: hydrothermal synthesis of layered vanadium oxides with interlayer metal coordination complexes. Angewandte Chemie, 35, 989-991(1996).
[89] M MASTRAGOSTINO, C ARBIZZANI, F SOAVI. Conducting polymers as electrode materials in supercapacitors. Solid State Ionics, 148, 493-498(2002).
[90] S LINDBERG, N M NDIAYE, N MANYALA et al. A VO2 based hybrid super-capacitor utilizing a highly concentrated aqueous electrolyte for increased potential window and capacity. Electrochimica Acta, 345, 136225(2020).
[91] X LIU, G B XU, Q ZHANG et al. Ultrathin hybrid nanobelts of single-crystalline VO2 and Poly (3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. Journal of Power Sources, 463, 228223(2020).
[92] Y LIU, P HU, H LIU et al. Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Materials Today Energy, 17, 100431(2020).
[93] A M AZHARUDEEN, R KARTHIGA, M RAJARAJAN et al. Enhancement of electrochemical sensor for the determination of glucose based on mesoporous VO2/PVA nanocomposites. Surfaces and Interfaces, 16, 164-173(2019).
[94] M S KIM, J KIM, S L LEE et al. Simultaneous measurement of temperature and pressure using voltage-induced oscillation in vanadium-dioxide-based planar device. Sensors Actuators A-Physical, 295, 169-176(2019).
[96] A MIKHAIL, R BLANCHARD, S ZHANG et al. Vanadium dioxide as a natural disordered metamaterial:perfect thermal emission and large broadband negative differential thermal emittance. Physical Review X, 3, 041004(2013).
[97] J LIU, Y LI, J Z ZHOU et al. Design of calorimetric biosensor based on VO2 thermally induced phase transition. Electeonic Components and Materials, 38, 62-68(2019).
[98] J R LIANG, K L ZHU, R YANG et al. Room temperature NO2 sensing properties of Au-decorated vanadium oxide nanowires sensor. Ceramics International, 44, 2261-2268(2017).
[99] S BHUPATHI, S C WANG, M ABUTOAMA et al. Femtosecond laser-induced vanadium oxide metamaterial nanostructures and the study of optical response by experiments and numerical simulations. ACS Applied Materials& Interfaces, 12, 41905-41918(2020).
[100] L BOULLEY, T MAROUTIAN, P LAFFAILLE et al. In vanadium oxide based mid-infrared optoelectronics devices, 136-136(2018).
Get Citation
Copy Citation Text
Qianqian SHI, Jiang WANG, Guanghua CHENG. Preparation Technology and Application of Vanadium Dioxide Thin Films(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1016002
Category:
Received: Jul. 26, 2022
Accepted: Oct. 9, 2022
Published Online: Nov. 30, 2022
The Author Email: CHENG Guanghua (guanghuacheng@nwpu.edu.cn)