Optics and Precision Engineering, Volume. 32, Issue 2, 193(2024)

Semiparametric dynamic model identification for hyper-redundant manipulator based on iterative optimization and neural network compensation

Yufei ZHOU1...2, Zhongcan LI1,2, Yi LI3, Jingkai CUI1,2, Shunfeng HE1,2, Zhanyi SHENG1 and Mingchao ZHU1,* |Show fewer author(s)
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30033, China
  • 2University of Chinese Academy of Sciences,Beijing100049,China
  • 3Ningxia University, School of Mechanical Engineering, Yinchuan750021, China
  • show less
    Figures & Tables(20)
    Structure of hyper-redundant modular manipulator
    Joint angle position of optimal excitation trajectory
    Joint angle velocity of optimal excitation trajectory
    Joint angle acceleration of optimal excitation trajectory
    Trajectory of manipulator’s end-effector in world coordinate system
    Overall procedure of the iterative optimization algorithm
    Architectural graph of the BP neural network
    Experiment platform of hyper-redundant manipulator dynamic model identification
    Experimental trajectory of the manipulator
    Iteration convergence of inner loop
    Fitting results of joint friction force
    Convergence of the joint friction model α
    Identification model verification result
    • Table 1. Hyper-redundant modular manipulator modified DH parameters

      View table
      View in Article

      Table 1. Hyper-redundant modular manipulator modified DH parameters

      关节αadoffset
      1000.287 80
      2π/200π
      3π/200.349 8π
      4π/200π
      5π/200.318 7π
      6π/200π
      7π/200.294 1π
      8π/200π
      9π/200.235 1π
    • Table 2. Hyper-redundant modular manipulator joint motor parameters

      View table
      View in Article

      Table 2. Hyper-redundant modular manipulator joint motor parameters

      关节额定功率/W额定力矩K/(N·m)力矩系数
      14102.30.21
      24102.30.21
      34301.430.13
      44301.430.13
      52700.740.106
      62700.740.106
      71550.270.057
      81550.270.057
      91550.270.057
    • Table 3. Hyper-redundant manipulator joint motion restriction

      View table
      View in Article

      Table 3. Hyper-redundant manipulator joint motion restriction

      关节qiq˙i maxq¨i max
      1,3,5,7,9±180°30 (°)/s50 (°)/s2
      2,4,6,8±90°30 (°)/s50 (°)/s2
    • Table 4. Identification trajectory parameters for hyper-redundant manipulator

      View table
      View in Article

      Table 4. Identification trajectory parameters for hyper-redundant manipulator

      关节a1a2a3a4a5
      10.245 290.444 83-0.001 05-0.031 19-0.060 6
      20.044 780.133 35-0.018 24-0.008 73-0.010 9
      30.876 44-0.407 96-0.065 770.023 50.038 9
      4-0.162 60-0.018 60.082 10.166 26-0.126 6
      5-0.004 310.001 530.005 76-0.076 110.046 79
      6-0.675 95-0.007 46-0.013 720.120 159-0.043 8
      7-1.556 050.005 1-0.001 080.004 550.059 06
      8-0.136 723-0.007 7-0.040 1-0.065 00.062 78
      90.048 681-0.018 40.096 5-0.062 20.006 03
      关节b1b2b3b4b5q0
      1-0.165 460.039 0-0.072 40.228 7-0.121 860.180 81
      20.829 112-0.135 40.365 4-0.171-0.193 710.019 94
      3-0.143 53-0.337 80.042 90.032 70.112 00-0.341 0
      40.659 13-0.001 790.026 1-0.173 5-0.008 40.038 32
      5-0.012 79-0.307 5-0.068 4-0.048 80.205 64-0.633 6
      60.029 900.006 170.009 37-0.017 4-0.000 58-0.021 3
      70.018 480.015 620.007 3-0.023 70.004 850.104 79
      80.211 180.019 830.027 69-0.140 50.044 880.033 15
      90.523 66-0.044 77-0.004 1-0.028 3-0.062 39-0.107 19
    • Table 5. Identify torque residual root mean square (RMS) values by various methods

      View table
      View in Article

      Table 5. Identify torque residual root mean square (RMS) values by various methods

      方法2*关节1关节2关节3关节4关节5关节6关节7关节8关节9

      总和/

      Nm

      方法17.759 811.443 811.096 67.436 24.878 84.842 91.876 52.009 11.655 152.998 9
      方法27.807 610.603 310.002 16.462 93.245 14.119 41.381 61.681 71.401 146.704 8
      方法33.695 78.696 67.254 75.848 52.864 33.064 71.213 81.638 31.288 235.564 7
      方法43.704 79.106 77.335 65.411 92.841 73.017 11.300 71.566 01.321 835.606 3
      方法54.074 07.351 85.208 72.765 12.306 12.101 21.138 61.466 60.804 727.216 7
    • Table 6. Dynamic parameter identification results

      View table
      View in Article

      Table 6. Dynamic parameter identification results

      参数参数参数参数参数
      110.588-2.182150.842 8228.956 929-0.189
      2115.1913.462160.021 623121.04302.515
      312.8410-0.042170.047 8241.552310.668
      4-1.4711-6.812181.295 4250.89832-3.784
      51.84312114.87190.853 7261.800337.383
      61.109137.195 5200.402 227-0.2843464.954
      71.19014-2.32821-0.02528-0.297354.268
    • Table 6. Dynamic parameter identification results

      View table
      View in Article

      Table 6. Dynamic parameter identification results

      参数参数参数参数参数
      363.368480.549 860-0.181 371-0.017 7830.004 4
      37-0.29149-0.005 861-0.05972-0.012 284-0.036 6
      38-0.02150-0.000 762-0.10473-0.096 7850.072 67
      390.344 551-0.001 3630.456 5740.237 686-0.029 3
      400.025 2520.556 4640.055 175-0.050 7870.017 6
      410.301 453-0.052 758-0.33276-0.434 5881.616 7
      42-0.129 754-1.76465-0.059 9773.0658926.124
      430.002 4553.407662.953 17833.66903.091
      444.396 15643.016732.698796.71091-0.203 7
      45126.84576.842685.125 480-0.123
      466.074 458-0.332690.228 981-0.006
      470.286 0590.005700.233 282-0.003 1
    Tools

    Get Citation

    Copy Citation Text

    Yufei ZHOU, Zhongcan LI, Yi LI, Jingkai CUI, Shunfeng HE, Zhanyi SHENG, Mingchao ZHU. Semiparametric dynamic model identification for hyper-redundant manipulator based on iterative optimization and neural network compensation[J]. Optics and Precision Engineering, 2024, 32(2): 193

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 2, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: ZHU Mingchao (mingchaozhu@gmail.com)

    DOI:10.37188/OPE.20243202.0193

    Topics