Optics and Precision Engineering, Volume. 30, Issue 16, 1905(2022)

Infrared intelligent condition monitoring and fault diagnosis of rotating machinery

Yang WANG1,2、* and Li YANG1
Author Affiliations
  • 1College of Power Engineering, Naval University of Engineering, Wuhan430033, China
  • 2No.9840 Troops of PLA, Qingdao66500, China
  • show less
    References(21)

    [1] [1] 1张承亮. 旋转机械故障诊断方法概述[J]. 科技情报开发与经济, 2008(26): 191-193. doi: 10.3969/j.issn.1005-6033.2008.26.105ZHANGC L. Summarization on the fault diagnosis of rotating machinery[J]. Sci-Tech Information Development & Economy, 2008(26): 191-193.(in Chinese). doi: 10.3969/j.issn.1005-6033.2008.26.105

    [2] [2] 2程玉兰. 红外诊断技术与应用(一)[J]. 设备管理与维修, 2003(9):41-43. doi: 10.3969/j.issn.1001-0599.2003.09.035CHENGY L. Lectures: infared diagnosis technique and application(1)[J]. Plant Maintenance Engineering, 2003(9):41-43.(in Chinese). doi: 10.3969/j.issn.1001-0599.2003.09.035

    [3] [3] 3周可慧. 基于改进AlexNet模型的关键变电设备红外图像智能分析[D]. 广州: 华南理工大学, 2020.ZHOUK H. Intelligent Analysis of Infrared Images of Key Substation Equipment Based on Improved AlexNet Model[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)

    [4] [4] 4李军锋. 基于深度学习的电力设备图像识别及应用研究[D]. 广州: 广东工业大学, 2018.LIJ F. Research on Electric Equipment Image Recognition and its Application based on Deep Learning[D]. Guangzhou: Guangdong University of Technology, 2018. (in Chinese)

    [5] [5] 5尹思宇. 深度学习在变电站电力设备缺陷检测中的应用研究[D]. 成都: 电子科技大学, 2020.YINS Y. A Research on Application of Deep Learning in Defect Detection of Power Equipment in Substations[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)

    [6] [6] 6杨浩. 基于深度学习的电气设备红外图像检索系统的研究与实现[D]. 南昌: 华东交通大学, 2020.YANGH. Research and Implementation of Infrared Image Retrieval System for Electrical Equipment Based on Deep Learning[D]. Nanchang: East China Jiaotong University, 2020. (in Chinese)

    [7] A NASIRI, A TAHERI-GARAVAND, M OMID et al. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images. Applied Thermal Engineering, 163, 114410(2019).

    [8] C WEI, F B TAO, Y D LIN et al. Substation equipment thermal fault diagnosis model based on ResNet and improved Bayesian optimization, 1-5(2019).

    [9] [9] 9李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84.LIW P, XIEK, LIAOX, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84.(in Chinese)

    [10] [10] 10郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.GUOM H, XUH W. Hot spot defect detection based on infrared thermal image and faster RCNN[J]. Computer Systems & Applications, 2019, 28(11): 265-270.(in Chinese)

    [11] [11] 11刘子全, 付慧, 李玉杰, 等. 基于Mask-RCNN迁移学习的红外图像电力设备检测[J]. 数据采集与处理, 2021, 36(1): 176-183.LIUZ Q, FUH, LIY J, et al. Electrical equipment detection in infrared images based on transfer learning of mask-RCNN[J]. Journal of Data Acquisition and Processing, 2021, 36(1): 176-183.(in Chinese)

    [12] [12] 12周仿荣, 马仪, 马御棠, 等. 基于电力设备红外图像的故障点快速识别算法[J]. 电力设备管理, 2019, (10): 193-195.ZHOUF R, MAY, MAY T, et al. Algorithm of quick detection of fault locations based on electrical power equipment's infrared imagery[J]. Electric Power Equipment Management, 2019(10): 193-195.(in Chinese)

    [13] [13] 13王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983-987. doi: 10.3724/sp.j.7103116038WANGY P, ZHANGH M, PENGC, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983-987.(in Chinese). doi: 10.3724/sp.j.7103116038

    [14] J S KIM, K N CHOI, S W KANG. Infrared thermal image-based sustainable fault detection for electrical facilities. Sustainability, 13, 557(2021).

    [15] C KWAN, B CHOU, J YANG et al. Deep learning based target tracking and classification for infrared videos using compressive measurements. Journal of Signal and Information Processing, 10, 167-199(2019).

    [16] [16] 16王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310.WANGX H, LIH, FANS S, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310.(in Chinese)

    [17] [17] 17李浩. 基于计算机视觉的电力设备红外检测研究[D]. 长沙: 长沙理工大学, 2019.LIH. Research on Infrared Detection of Power Equipment based on Computer Vision[D]. Changsha: Changsha University of Science & Technology, 2019. (in Chinese)

    [18] [18] 18王彦博, 陈培峰, 徐亮, 等. 基于嵌入式深度学习的电力设备红外热成像故障识别[J]. 计算机系统应用, 2020, 29(6): 97-103.WANGY B, CHENP F, XUL, et al. Fault recognition of power equipment in infrared thermal images based on deep learning with embedded devices[J]. Computer Systems & Applications, 2020, 29(6): 97-103.(in Chinese)

    [19] M EKSTROM. Digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 484-486(1980).

    [20] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [21] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yang WANG, Li YANG. Infrared intelligent condition monitoring and fault diagnosis of rotating machinery[J]. Optics and Precision Engineering, 2022, 30(16): 1905

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Jun. 10, 2021

    Accepted: --

    Published Online: Sep. 22, 2022

    The Author Email: WANG Yang (373647411@qq.com)

    DOI:10.37188/OPE.20223016.1905

    Topics