Optics and Precision Engineering, Volume. 30, Issue 16, 1905(2022)

Infrared intelligent condition monitoring and fault diagnosis of rotating machinery

Yang WANG1,2、* and Li YANG1
Author Affiliations
  • 1College of Power Engineering, Naval University of Engineering, Wuhan430033, China
  • 2No.9840 Troops of PLA, Qingdao66500, China
  • show less
    Figures & Tables(11)
    Schematic diagram of Gamma transformation
    Framework of Faster R-CNN
    ResNet50 network structure diagram
    Infrared intelligent fault diagnosis process of rotating machinery
    Rotating machinery fault diagnosis experimental platform
    Fault preset diagram of rotor system
    Simulation diagram of stator winding wear
    Infrared intelligent fault diagnosis of rotating machinery
    • Table 1. Target detection results

      View table
      View in Article

      Table 1. Target detection results

      Random GroupmAPmIoU
      197.80%83.30%
      299.35%82.33%
      396.93%81.30%
      496.08%78.29%
      597.37%80.23%
      694.83%80.01%
      792.22%80.63%
      899.65%80.02%
      999.51%84.89%
      1095.78%80.15%
    • Table 2. State classification accuracy

      View table
      View in Article

      Table 2. State classification accuracy

      Random GroupRotor systemMotor
      1100%98.81%
      299.40%98.81%
      3100%98.81%
      4100%98.21%
      599.40%98.21%
      6100%98.81%
      7100%100%
      8100%98.21%
      9100%98.21%
      10100%98.81%
    • Table 3. Intelligent fault diagnosis accuracy

      View table
      View in Article

      Table 3. Intelligent fault diagnosis accuracy

      ItemMotorRotor systemBoth
      197.62%95.24%93.45%
      290.48%95.83%86.90%
      394.05%97.62%91.67%
      495.24%93.45%88.69%
      594.64%92.86%88.10%
      693.45%95.24%89.29%
      797.02%89.29%86.90%
      894.05%97.02%91.67%
      994.64%98.81%93.45%
      1095.83%94.64%90.48%
      Mean94.70%95.00%90.06%
    Tools

    Get Citation

    Copy Citation Text

    Yang WANG, Li YANG. Infrared intelligent condition monitoring and fault diagnosis of rotating machinery[J]. Optics and Precision Engineering, 2022, 30(16): 1905

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Jun. 10, 2021

    Accepted: --

    Published Online: Sep. 22, 2022

    The Author Email: WANG Yang (373647411@qq.com)

    DOI:10.37188/OPE.20223016.1905

    Topics