Journal of Applied Optics, Volume. 45, Issue 5, 903(2024)
Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure
[1] LI Yunxia, MENG Wen, MA Lihua et al[M]. Passive locating technology(2009).
[2] FU Xiaoning, WANG Bingjian, WANG Di[M]. Electro-optic ranging & countermeasure(2012).
[3] BAI Tingzhu[M]. Electro-optic imaging technology and system(2016).
[4] WANG Dapeng, WU Zhuokun, WANG Dongfeng[M]. Principle and technology of infrared countermeasure(2021).
[5] WANG Xiaorui[M]. Electro-optic imaging system: modeling, simulation, tesing and evaluation(2017).
[6] LÜ Tong, ZHANG Chenwei, LIU Jia et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica, 38, 25-35(2021).
[7] LI W, HUANG W, WANG X et al. Metamaterial absorbers: from tunable surface to structural transformation. advanced materials, 34, 2202509(2022).
[8] ZHANG K, HOU Z, BI S et al. Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate[J]. Chinese Physics B, 26, 127802(2017).
[9] DING F, CUI Y, GE X et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2012).
[10] PU Mingbo. Study on the broadband frequency response of subwavelength metamaterial[D](2013).
[11] XIONG Han. Research on the application of electromagnetic metamaterial in microwave absorber and antenna[D](2014).
[12] LI X, YU L, ZHAO W et al. Prism-shaped hollow carbon decorated with poly aniline for microwave absorption[J]. Chemical Engineering Journal, 379, 122393(2020).
[13] CHEN X, WU Z, ZHANG Z et al. Ultra-broadband and wide-angle absorption base don 3D-printed pyramid[J]. Optics & Laser Technology, 124, 105972(2020).
[14] ZHANG Y, PAN L, ZHANG P et al. Gradient multilayer design of Ti3xC2Tx MXene nanocomposite for strong and broadband microwave absorption[J]. Small Science, 22000(2022).
[15] HUANG Z, CHEN H, HUANG Y et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials, 28, 1704363(2018).
[16] XIAO D, ZHU M, WANG Q et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C, 8, 7244-7252(2020).
[17] CHENG X, HUANG R, XU X et al. Broadband terahertz near-perfect absorbers[J]. ACS Applied Materials & Interfaces, 12, 33352-33360(2020).
[18] TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure whit graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 44, 6-16(2023).
[19] CUI Y X, XU J, FUNG K H et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 99, 253101(2011).
[20] CUI Y X, FUNG K H, XU J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443(2012).
[21] ZHANG Nan. Research on infrared metamaterial absorbers and their thermal eadiation controlling based on surface plamsmon polaritons[D](2015).
[22] FENG Rui. Study on nearly perfect absorption of infrared periodic micro-structure[D](2015).
[23] WANG Qizhen. Infrared absorption characteristics analysis for square loop nanostructure of Al substrate[D](2015).
[24] ZHOU Y, LIANG Z, QIN Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).
[25] QIN Zheng, LIANG Zhongzhu, SHI Xiaoyan et al. Mutimode resonance triple-band metamaterial absorber from mid-infrared to very long wavelengths[J]. Infrared And Laser Engineering, 51, 78-82.(2022).
Get Citation
Copy Citation Text
Ligang TAN, Meiting WEI, Jie LI, Mingwei LUO. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903
Category:
Received: Jan. 19, 2024
Accepted: --
Published Online: Dec. 20, 2024
The Author Email: Meiting WEI (魏美亭)