Journal of Applied Optics, Volume. 45, Issue 5, 903(2024)

Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure

Ligang TAN... Meiting WEI*, Jie LI and Mingwei LUO |Show fewer author(s)
Author Affiliations
  • Technology Innovation Center, Sichuan Jiu Zhou Electric Group Co.,Ltd., Mianyang 621000, China
  • show less
    Figures & Tables(20)
    Diagram of 5 separate layers structure
    Schematic diagram of equivalent resonance circuit
    Optimal design flow of 5 separate layers structure by genetic algorithm
    0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure
    Reflection loss and absorption efficiency of each frequency in the first partition
    Reflection loss and absorption efficiency of each frequency in the second partition
    Reflection loss and absorption efficiency of each frequency in the third partition
    Total absorption efficiency curve of ultra-wide spectrum metamaterial absorption structure in wavelength range of 0.2 μm~20 μm
    Absorption property simulation of partition 1 using optimal structure parameters
    Absorption property simulation of partition 2 using optimal structure parameters
    Absorption property simulation of partition 3 using optimal structure parameters
    Lorentz fit curve for polishing absorption cycle indent of partition 1
    Absorption efficiency simulation of five separation layers in partition 1 at different incident angles
    Absorption efficiency simulation of five separation layers in partition 2 at different incident angles
    Absorption efficiency simulation of five separation layers in partition 3 at different incident angles
    Total absorption efficiency curves of ultra-wide spectrum metamaterial absorption structure in range of 0.2 μm~20 μm at different angles
    • Table 1. Parameters of 3 scales 5 separate layers structure

      View table
      View in Article

      Table 1. Parameters of 3 scales 5 separate layers structure

      NameSurface mental structure dimension/nmDielectric layer thickness/nm
      The fifth layer of Partition 331.38.63
      The fourth layer of Partition 320329.0
      The third layer of Partition 316720.7
      The second layer of Partition 352324.3
      The first layer of Partition 333412.7
      The fifth layer of Partition 2175190
      The fourth layer of Partition 2611158
      The third layer of Partition 2534130
      The second layer of Partition 2841121
      The first layer of Partition 21 670163
      The fifth layer of Partition 1392143.6
      The fourth layer of Partition 12 490814
      The third layer of Partition 11 850516
      The second layer of Partition 15 200334
      The first layer of Partition 14 950478
    • Table 2. Reflection loss and absorption efficiency at typical frequencies

      View table
      View in Article

      Table 2. Reflection loss and absorption efficiency at typical frequencies

      Frequency/THzReflection loss/dBAbsorption efficiency
      12.21−14.080.802 4
      19.42−20.100.901 2
      35.98−21.160.912 5
      49.43−18.990.887 7
      60.64−20.090.901 1
      71.29−19.000.887 8
      84.75−21.140.912 3
      97.11−20.550.906 2
      132.2−19.420.893 1
      179.9−20.540.906 1
      224.8−19.610.895 4
      286.4−22.520.925 1
      350.9−19.620.895 5
      395.7−20.540.906 0
      443.3−19.400.892 9
      305.2−13.830.796 5
      470.1−20.680.907 6
      650.5−19.230.890 7
      913.6−20.960.910 4
      1208−19.080.888 9
      1516−21.350.914 4
      1824−19.020.888 1
      2119−21.040.911 3
      2217−20.390.904 4
    • Table 3. Optimal parameters of equivalent resonant circuit

      View table
      View in Article

      Table 3. Optimal parameters of equivalent resonant circuit

      ParametersThe first layerThe second layerThe third layerThe fourth layerThe fifth layer
      Resistance1(Ω)247.74493.97787.701332.501130.59
      Inductance1(H)1.89×10−161.67×10−163.99×10−176.13×10−172.06×10−16
      Condenser1(F)8.03×10−137.91×10−131.10×10−131.36×10−133.39×10−15
      Resistance2(Ω)341.33647.69580.541865.573177.54
      Inductance2(H)2.021×10−162.43×10−169.84×10−164.98×10−162.56×10−16
      Condenser2(F)2.97×10−133.58×10−139.68×10−146.45×10−145.53×10−15
      Resistance3(Ω)316.04421.521309.93894.811809.43
      Inductance3(H)1.75×10−161.78×10−164.93×10−171.14×10−162.52×10−16
      Condenser3(F)8.08×10−133.67×10−139.50×10−148.05×10−145.84×10−14
    • Table 4. Absorption efficiency of five separation layers structure at different incident angles

      View table
      View in Article

      Table 4. Absorption efficiency of five separation layers structure at different incident angles

      Incident angles/(°)Absorption efficiency better than 80%
      Partition 1 frequency range/ THzPartition 2 frequency range / THzPartition 3 frequency range / THz
      0[12.21,88.67][64.12,443.30][310.30,2 217]
      10[12.41,88.67][65.15,443.30][315.50,2 217]
      20[12.62,88.67][67.22,443.30][325.80,2 217]
      30[13.65,88.67][73.40,443.30][346.40,2 217]
      40[15.30,88.67][83.71,443.30][397.90,2 217]
      50[18.80,88.67][105.40,443.30][495.90,2 217]
      60[27.46,88.67][161.00,238.80][743.30,1 152.00]
    Tools

    Get Citation

    Copy Citation Text

    Ligang TAN, Meiting WEI, Jie LI, Mingwei LUO. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 19, 2024

    Accepted: --

    Published Online: Dec. 20, 2024

    The Author Email: WEI Meiting (魏美亭)

    DOI:10.5768/JAO202445.0501004

    Topics