Laser & Optoelectronics Progress, Volume. 58, Issue 7, 0700008(2021)

Research Progress of Transverse Mode Control for Vertical Cavity Surface Emitting Lasers

Xiangyuan Wang, Bifeng Cui*, Caifang Li, Jianrong Xu, and Haojie Wang
Author Affiliations
  • Key Laboratory of Opto-Electronics Technology of Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing 100124,China
  • show less
    References(39)

    [1] Mangaser R, Rose K. Estimating interconnect performance for a new National Technology Roadmap for Semiconductors[C], 253-255(1998).

    [2] Xie Y Y, Kan Q, Xu C et al. Low threshold current single-fundamental-mode photonic crystal VCSELs[J]. IEEE Photonics Technology Letters, 24, 464-466(2012).

    [3] Jager R, Grabherr M, Jung C et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs[J]. Electronics Letters, 33, 330-331(1997).

    [4] Alias M S, Leisher P O, Choquette K D et al. Efficiency and spectral characteristics of 850 nm oxide-confined vertical-cavity surface-emitting lasers[C], 231-235(2006).

    [5] Pian S J, Ullah S, Yang Q et al. Single-mode semiconductor nanowire lasers[J]. Chinese Journal of Lasers, 47, 0701003(2020).

    [6] Tang Y, Cao C F, Zhao X Y et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J]. Laser & Optoelectronics Progress, 56, 131402(2019).

    [7] Unold H J, Mahmoud S W Z, Jager R et al. Large-area single-mode VCSELs and the self-aligned surface relief[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 386-392(2001).

    [8] Choquette K D, Chow W W, Hadley G R et al. Properties of small-aperture selectively oxidized VCSELs[C], 144-145(1996).

    [9] Bond A E, Dapkus P D, O'Brien J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers‍[J]. IEEE Photonics Technology Letters, 10, 1362-1364(1998).

    [10] Shchukin V, Ledentsov N N, Kropp J et al. Single-mode vertical cavity surface emitting laser via oxide-aperture-engineering of leakage of high-order transverse modes‍[J]. IEEE Journal of Quantum Electronics, 50, 990-995(2014).

    [11] Unold H J, Golling M, Michalzik R et al. Photonic crystal surface-emitting lasers: tailoring waveguiding for single-mode emission[C], 520-521(2001).

    [12] Danner A J, Yokouchi N, Raftery J J et al. Focused ion beam post-processing for single mode photonic crystal vertical cavity surface-emitting lasers[C], 155-156(2003).

    [13] Choquette K D, Danner A J, Raftery J J et al. Vertical cavity photonic crystal coupled-defect lasers for optical interconnects[C](2004).

    [14] Lee K H, Baek J H, Hwang I K et al. Square-lattice photonic-crystal vertical-cavity surface-emitting lasers[J]. Optics Express, 12, 4136-4143(2004).

    [15] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [16] Yang H P D, Hsu I C, Chang Y H et al. Characteristics of InGaAs submonolayer quantum-dot and InAs quantum-dot photonic-crystal vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 26, 1387-1395(2008).

    [17] Xu X S, Wang C X, Du W et al. Investigation of photonic crystal vertical-cavity surface-emitting lasers at 850 nm[J]. Physics, 36, 17-19(2007).

    [18] Xie Y Y, Xu C, Kan Q et al. High power single mode output low threshold current photonic crystal vertical cavity surface emitting lasers[C], 1-3(2012).

    [19] Martinsson H, Vukusic J A, Larsson A. Single-mode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 12, 1129-1131(2000).

    [20] Furukawa A, Sasaki S, Hoshi M et al. High-power single-mode VCSELs with triangular holey structure[C], 1024-1025(2004).

    [21] Xu D W, Yoon S F, Ding Y et al. 1.3 μm In(Ga)As quantum-dot VCSELs fabricated by dielectric-free approach with surface-relief process[J]. IEEE Photonics Technology Letters, 23, 91-93(2011).

    [22] Li X S, Ning Y Q, Jia P et al. Rectangular mesa shaped vertical cavity surface emitting laser with shallow surface relief[J]. Chinese Journal of Lasers, 41, 1202005(2014).

    [23] Unold H J, Grabherr M, Eberhard F et al. Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief[J]. Electronics Letters, 35, 1340(1999).

    [24] Unold J, Golling M, Mederer F et al. Singlemode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching[J]. Electronics Letters, 37, 570-572(2001).

    [25] Debernardi P, Unold H J, Maehnss J et al. Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1394-1405(2003).

    [26] Deppe D G, Huffaker D L. High spatial coherence vertical-cavity surface-emitting laser using a long monolithic cavity[J]. Electronics Letters, 33, 211-213(1997).

    [27] Unold H J, Mahmoud S W Z, Jager R et al. Improving single-mode VCSEL performance by introducing a long monolithic cavity[J]. IEEE Photonics Technology Letters, 12, 939-941(2000).

    [28] Wiemer M W, Aldaz R I, Miller D A B et al. A single transverse-mode monolithically integrated long vertical-cavity surface-emitting laser[J]. IEEE Photonics Technology Letters, 17, 1366-1368(2005).

    [29] Fischer A J, Choquette K D, Chow W W et al. 2 mW single-mode power from a coupled-resonator vertical-cavity laser[C], 802-803(2000).

    [30] Kardosh I, Demaria F, Rinaldi F et al. High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors[J]. IEEE Photonics Technology Letters, 20, 2084-2086(2008).

    [31] Wu Y A, Li G S, Nabiev R F et al. Single-mode, passive antiguide vertical cavity surface emitting laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 629-637(1995).

    [32] Yoo B S, Chu H Y, Park M S et al. Transverse mode characteristics in amorphous-GaAs-antiguided vertical-cavity surface-emitting lasers[C], 11(1996).

    [33] Zhou D L, Mawst L J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 38, 1599-1606(2002).

    [34] Tee C W, Yu S F, Penty R V et al. Transient response of ARROW VCSELs[J]. IEEE Journal of Quantum Electronics, 41, 140-147(2005).

    [35] Więckowska M, Czyszanowski T, Almuneau G et al. Antiresonant oxide island as a measure for improved single-mode emission in VCSELs[C], 1-4(2018).

    [36] Yang J M, Lin Y L, Huang Q Q et al. Wavelength-tunable linearly polarized Yb-doped fiber laser based on tilted fiber grating[J]. Acta Optica Sinica, 40, 0314003(2020).

    [37] Zhou Y, Huang M C Y, Chang-Hasnain C J. Transverse mode control in high-contrast subwavelength grating VCSEL[C], 1-2(2007).

    [38] Kashino J, Inoue S, Matsutani A et al. Transverse mode control of VCSELs using angular dependent high-contrast grating mirror[C], 244-245(2013).

    [39] Zheng Z, Zou Y G, Shi L L et al. High-contrast grating structure design for liquid crystal tunable vertical-cavity surface-emitting lasers[J]. Laser & Optoelectronics Progress, 57, 011402(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiangyuan Wang, Bifeng Cui, Caifang Li, Jianrong Xu, Haojie Wang. Research Progress of Transverse Mode Control for Vertical Cavity Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 10, 2020

    Accepted: Sep. 8, 2020

    Published Online: Apr. 25, 2021

    The Author Email: Cui Bifeng (cbf@bjut.edu.cn)

    DOI:10.3788/LOP202158.0700008

    Topics