Chinese Journal of Quantum Electronics, Volume. 40, Issue 3, 301(2023)

Research progress of tunable terahertz metamaterial absorbers

ZHANG Ruoya1... ZHU Qiaofen1,* and ZHANG Yan2,** |Show fewer author(s)
Author Affiliations
  • 1Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China
  • 2Beijing Advanced Innovation Center for Imaging Theory and Technology, Key Laboratory of Terahertz Optoelectronics,Ministry of Education, Beijing Key Laboratory of Metamaterials and Devices, Department of Physics,Capital Normal University, Beijing 100048, China
  • show less
    References(101)

    [1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] Fang P P, Shi X W, Liu C et al. Single- and dual-band convertible terahertz absorber based on bulk Dirac semimetal[J]. Optics Communications, 462, 125333(2020).

    [4] Zhao Y T, Wu B, Huang B J et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface[J]. Optics Express, 25, 7161-7169(2017).

    [5] Wang J L, Zhang B Z, Wang X et al. Flexible dual-band band-stop metamaterials filter for the terahertz region[J]. Optical Materials Express, 7, 1656-1665(2017).

    [6] Zhou X T, Yin X, Zhang T et al. Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide[J]. Optics Express, 23, 11657-11664(2015).

    [7] Wang J J, Guo K, Guo Z Y. THz filter based on the Si microdisk array[J]. AIP Advances, 9, 045106(2019).

    [8] Kaveev A K, Kropotov G I, Tsygankova E V et al. Terahertz polarization conversion with quartz waveplate sets[J]. Applied Optics, 52, B60-B69(2013).

    [9] Luo S W, Lin B, Yu A L et al. Broadband tunable terahertz polarization converter based on graphene metamaterial[J]. Optics Communications, 413, 184-189(2018).

    [10] Yin Z P, Zheng Q, Wang K Y et al. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces[J]. Optics Communications, 429, 41-45(2018).

    [11] Tian S N, Guo H M, Hu J B et al. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency[J]. Optics Express, 27, 680-688(2019).

    [12] Fan F, Zhang X Z, Li S S et al. Terahertz transmission and sensing properties of microstructured PMMA tube waveguide[J]. Optics Express, 23, 27204-27212(2015).

    [13] He X J, Zhang Q F, Lu G J et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. RSC Advances, 6, 52212-52218(2016).

    [14] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [15] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [16] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [17] Zhang Y W, Qi L M, Liu C et al. Investigation of asymmetric transmission devices based on metamaterials[J]. Chinese Journal of Quantum Electronics, 35, 385-394(2018).

    [18] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [19] Tao H, Landy N I, Bingham C M et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization[J]. Optics Express, 16, 7181-7188(2008).

    [20] Pan M, Huang H Z, Fan B D et al. Theoretical design of a triple-band perfect metamaterial absorber based on graphene with wide-angle insensitivity[J]. Results in Physics, 23, 104037(2021).

    [21] Zhou W, Chen J, Li H et al. Progress of electromagnetic metamaterial perfect absorber based on terahertz band[J]. Laser & Optoelectronics Progress, 59, 96-108(2022).

    [22] Chen H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 20, 7165-7172(2012).

    [23] Li J S, Yan D X, Sun J Z. Flexible dual-band all-graphene-dielectric terahertz absorber[J]. Optical Materials Express, 9, 2067-2075(2019).

    [24] Shen N H, Massaouti M, Gokkavas M et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 106, 037403(2011).

    [25] Choi H S, Ahn J S, Jung J H et al. Mid-infrared properties of a VO2 film near the metal-insulator transition[J]. Physical Review B, 54, 4621-4628(1996).

    [26] Fang H M, Tian M, Chang S Q et al. Optical absorption properties in one-dimensional graphene-based photonic crystals[J]. Chinese Journal of Quantum Electronics, 35, 589-593(2018).

    [27] Tao H, Bingham C M, Strikwerda A C et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Physical Review B, 78, 241103(2008).

    [28] Wang B X, Zhai X, Wang G Z et al. Design of a four-band and polarization-insensitive terahertz metamaterial absorber[J]. IEEE Photonics Journal, 7, 1-8(2014).

    [29] Alaee R, Farhat M, Rockstuhl C et al. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express, 20, 28017-28024(2012).

    [30] Shen X P, Cui T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J]. Journal of Optics, 14, 114012(2012).

    [31] Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach[J]. Optics Express, 21, 9144-9155(2013).

    [32] Zhao Y, Huang Q P, Cai H L et al. A broadband and switchable VO2-based perfect absorber at the THz frequency[J]. Optics Communications, 426, 443-449(2018).

    [33] Zhang M, Song Z Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J]. Optics Express, 28, 11780-11788(2020).

    [34] Liu G D, Zhai X, Meng H Y et al. Dirac semimetals based tunable narrowband absorber at terahertz frequencies[J]. Optics Express, 26, 11471-11480(2018).

    [35] Huang X, Yang F, Gao B et al. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime[J]. Optics Express, 27, 25902-25911(2019).

    [36] Yan D X, Li J S. Tunable all-graphene-dielectric single-band terahertz wave absorber[J]. Journal of Physics D: Applied Physics, 52, 275102(2019).

    [37] Chen M, Chen C, Deng S J et al. Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals[J]. OSA Continuum, 2, 2477-2486(2019).

    [38] Xiong H, Shen Q. A thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate[J]. Nanoscale, 12, 14598-14604(2020).

    [39] Huang X, He W, Yang F et al. Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime[J]. Optical Materials Express, 9, 1377-1385(2019).

    [40] Deng G S, Xia T Y, Jing S C et al. A tunable metamaterial absorber based on liquid crystal intended for F frequency band[J]. IEEE Antennas and Wireless Propagation Letters, 16, 2062-2065(2017).

    [41] Zheng W, Li W, Chang S J. A thermally tunable terahertz metamaterial absorber[J]. Optoelectronics Letters, 11, 18-21(2015).

    [42] Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves[J]. Optical Materials, 62, 28-33(2016).

    [43] Wang T L, Cao M Y, Zhang H Y et al. Tunable terahertz metamaterial absorber based on Dirac semimetal films[J]. Applied Optics, 57, 9555-9561(2018).

    [44] Xiong H, Peng Y H, Yang F et al. Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal[J]. Optics Express, 28, 15744-15752(2020).

    [45] Zhong M, Jiang X T, Zhu X L et al. Design and fabrication of a single metal layer tunable metamaterial absorber in THz range[J]. Optics & Laser Technology, 125, 106023(2020).

    [46] Xing R, Jian S S. A dual-band THz absorber based on graphene sheet and ribbons[J]. Optics & Laser Technology, 100, 129-132(2018).

    [47] Bao Z Y, Wang J C, Hu Z D et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 27, 31435-31445(2019).

    [48] Meng W W, Que L C, Lv J et al. A triple-band terahertz metamaterial absorber based on buck Dirac semimetals[J]. Results in Physics, 14, 102461(2019).

    [49] Xu K D, Li J X, Zhang A X et al. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips[J]. Optics Express, 28, 11482-11492(2020).

    [50] Chen M, Sun W, Cai J J et al. Frequency-tunable terahertz absorbers based on graphene metasurface[J]. Optics Communications, 382, 144-150(2017).

    [51] Zhang Y, Lv J, Que L C et al. A double-band tunable perfect terahertz metamaterial absorber based on Dirac semimetals[J]. Results in Physics, 15, 102773(2019).

    [52] Wang F L, Huang S, Li L et al. Dual-band tunable perfect metamaterial absorber based on graphene[J]. Applied Optics, 57, 6916-6922(2018).

    [53] Li Z X, Wang T L, Qu L F et al. Design of bi-tunable triple-band metamaterial absorber based on Dirac semimetal and vanadium dioxide[J]. Optical Materials Express, 10, 1941-1950(2020).

    [54] Li W Y, Cheng Y Z. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate(STO) resonator structure[J]. Optics Communications, 462, 125265(2020).

    [55] Yin Z P, Lu Y J, Xia T Y et al. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal[J]. RSC Advances, 8, 4197-4203(2018).

    [56] Yao G, Ling F R, Yue J et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 24, 1518-1527(2016).

    [57] Li J S, Sun J Z. Umbrella-shaped graphene/Si for multi-band tunable terahertz absorber[J]. Applied Physics B, 125, 183(2019).

    [58] Fan C Z, Tian Y C, Ren P W et al. Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials[J]. Chinese Physics B, 28, 076105(2019).

    [59] Luo J, Lin Q, Wang L L et al. Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal[J]. Optics Express, 27, 20165-20176(2019).

    [60] Zhang B H, Qi Y P, Zhang T et al. Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross[J]. Results in Physics, 25, 104233(2021).

    [61] Wang R X, Li L, Liu J L et al. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal[J]. Optics Express, 25, 32280-32289(2017).

    [62] Xu Z C, Gao R M, Ding C F et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).

    [63] Jia Y L, Yin H Y, Yao H W et al. Realization of multi-band perfect absorber in graphene based metal-insulator-metal metamaterials[J]. Results in Physics, 25, 104301(2021).

    [64] Zhang R Y, Luo Y H, Xu J K et al. Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption[J]. Optics Express, 29, 42989-42998(2021).

    [65] Song Z Y, Wang K, Li J W et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 26, 7148-7154(2018).

    [66] Mou N L, Sun S L, Dong H X et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Optics Express, 26, 11728-11736(2018).

    [67] Wu T, Shao Y B, Ma S et al. Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate[J]. Optics Express, 29, 7713-7723(2021).

    [68] Feng H, Xu Z X, Li K et al. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials[J]. Optics Express, 29, 7158-7167(2021).

    [69] Xiao B G, Gu M Y, Xiao S S. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays[J]. Applied Optics, 56, 5458-5462(2017).

    [70] Li H, Yu J. Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial[J]. OSA Continuum, 3, 2143-2155(2020).

    [71] Xiong H, Shen Q, Ji Q. Broadband dynamically tunable terahertz absorber based on a Dirac semimetal[J]. Applied Optics, 59, 4970-4976(2020).

    [72] Xiong H, Ji Q, Bashir T et al. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal[J]. Optics Express, 28, 13884-13894(2020).

    [73] Wang S X, Cai C F, You M H et al. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: Simulation study[J]. Optics Express, 27, 19436-19447(2019).

    [74] Dao R N, Kong X R, Zhang H F et al. A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide[J]. Optik, 180, 619-625(2019).

    [75] Bai J J, Zhang S S, Fan F et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Optics Communications, 452, 292-295(2019).

    [76] Ye L F, Chen Y, Cai G X et al. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J]. Optics Express, 25, 11223-11232(2017).

    [77] Huang X, He W, Yang F et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J]. Optics Express, 26, 25558-25566(2018).

    [78] Xu J, Qin Z J, Chen M et al. Broadband tunable perfect absorber with high absorptivity based on double layer graphene[J]. Optical Materials Express, 11, 3398-3410(2021).

    [79] Song Z Y, Jiang M W, Deng Y D et al. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material[J]. Optics Communications, 464, 125494(2020).

    [80] Han J Z, Chen R S. Tunable broadband terahertz absorber based on a single-layer graphene metasurface[J]. Optics Express, 28, 30289-30298(2020).

    [81] Huang J, Li J N, Yang Y et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics Express, 28, 17832-17840(2020).

    [82] Wu G Z, Jiao X F, Wang Y D et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J]. Optics Express, 29, 2703-2711(2021).

    [83] Li Y L, Gao W, Guo L et al. Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial[J]. Optics Express, 29, 41222-41233(2021).

    [84] Huang J, Li J N, Yang Y et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 28, 7018-7027(2020).

    [85] Li Z X, Wang T L, Zhang H Y et al. Tunable bifunctional metamaterial terahertz absorber based on Dirac semimetal and vanadium dioxide[J]. Superlattices and Microstructures, 155, 106921(2021).

    [86] Song Z Y, Chen A P, Zhang J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 28, 2037-2044(2020).

    [87] Zhu H L, Zhang Y, Ye L F et al. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption[J]. Optics Express, 28, 38626-38637(2020).

    [88] Zhang M, Song Z Y. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption[J]. Optics Express, 29, 21551-21561(2021).

    [89] Liu Y, Huang R, Ouyang Z B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Optics Express, 29, 20839-20850(2021).

    [90] Chen Z, Chen J J, Tang H W et al. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene[J]. Optics Express, 30, 6778-6785(2022).

    [91] Yuan S, Yang R C, Xu J P et al. Photoexcited switchable single-/ dual-band terahertz metamaterial absorber[J]. Materials Research Express, 6, 075807(2019).

    [92] Chen Y, Li J S. Switchable dual-band and ultra-wideband terahertz wave absorber[J]. Optical Materials Express, 11, 2197-2205(2021).

    [93] Li H, Xu W H, Cui Q et al. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device[J]. Optics Express, 28, 40060-40074(2020).

    [94] Ye L F, Chen X E, Zhu C H et al. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide[J]. Optics Express, 28, 33948-33958(2020).

    [95] Wang T L, Zhang H Y, Zhang Y P et al. A bi-tunable switchable polarization-independent dual-band metamaterial terahertz absorber using VO2 and Dirac semimetal[J]. Results in Physics, 19, 103484(2020).

    [96] Lv T T, Dong G H, Qin C H et al. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition[J]. Optics Express, 29, 5437-5447(2021).

    [97] Li J S, Li X J. Switchable tri-function terahertz metasurface based on polarization vanadium dioxide and photosensitive silicon[J]. Optics Express, 30, 12823-12834(2022).

    [98] Wang T L, Zhang Y P, Zhang H Y et al. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J]. Optical Materials Express, 10, 369-386(2020).

    [99] Li H, Yu J. Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band[J]. Optics Express, 28, 25225-25237(2020).

    [100] Zhang B H, Xu K D. Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Journal of the Optical Society of America B, 38, 3425-3434(2021).

    [101] Zhang B H, Xu K D. Switchable and tunable bifunctional THz metamaterial absorber[J]. Journal of the Optical Society of America B, 39, A52-A60(2022).

    Tools

    Get Citation

    Copy Citation Text

    Ruoya ZHANG, Qiaofen ZHU, Yan ZHANG. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2022

    Accepted: --

    Published Online: Jun. 30, 2023

    The Author Email: ZHU Qiaofen (zhuqiaofen@hebeu.edu.cn), ZHANG Yan (yzhang@cnu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2023.03.002

    Topics