Journal of Inorganic Materials, Volume. 39, Issue 1, 32(2024)

Research Progress on Hard Carbon Anode for Li/Na-ion Batteries

Mengfei HU1,2, Liping HUANG1, He LI2, Guojun ZHANG1、*, and Houzheng WU2、*
Author Affiliations
  • 11. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Material, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
  • 22. SIAMC Advanced Materials Corporation, Huzhou 313100, China
  • show less
    References(73)

    [1] J LU, Z W CHEN, F PAN et al. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev., 1: 35(2018).

    [2] X W DOU, I HASA, D SAUREL et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today, 23: 87(2019).

    [5] O FROMM, A HECKMANN, U C RODEHORST et al. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon, 128: 147(2018).

    [6] M MARTÍNEZ-SANZ, F PETTOLINO, B FLANAGAN et al. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr. Polym., 175: 450(2017).

    [7] C M LEE, K KAFLE, D W BELIAS et al. Comprehensive analysis of cellulose content, crystallinity, and lateral packing in gossypium hirsutum and gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose, 22: 971(2015).

    [8] Y Y CHEN, Q WANG, N J CHEN et al. Internally-externally molecules-scissored ramie carbon for high performance electric double layer supercapacitors. Electrochim. Acta, 439: 141583(2023).

    [9] S GHOSH, R SANTHOSH, S JENIFFER et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep., 9: 16315(2019).

    [10] Y E ZHU, H C GU, Y N CHEN et al. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics, 24: 1075(2018).

    [12] H M ZHANG, W F ZHANG, H MING et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries. Chem. Eng. J., 341: 280(2018).

    [13] Z Z CHANG, B J YU, C Y WANG et al. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries. Electrochim. Acta, 176: 1352(2015).

    [14] S JAYARAMAN, A JAIN, M ULAGANATHAN et al. Li-ion vs. Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chem. Eng. J., 316: 506(2017).

    [15] A JAIN, V ARAVINDAN, S JAYARAMAN et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Sci. Rep., 3: 3002(2013).

    [16] J L GÓMEZ-URBANO, G MORENO-FERNÁNDEZ, M ARNAIZ et al. Chemical, graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors. Carbon, 162: 273(2020).

    [17] L WANG, Z SCHNEPP, M M TITIRICI et al. Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A, 1: 5269(2013).

    [20] J F NI, Y Y HUANG, L J GAO. A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power Sources, 223: 306(2013).

    [22] Y LI, Y HU, H LI et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A, 4: 96(2016).

    [23] Y LI, L MU, Y HU et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater., 2: 139(2016).

    [25] M M DOEFF, Y P MA, S J VISCO et al. Electrochemical insertion of sodium into carbon. J. Electrochem. Soc., 140: L169(1993).

    [26] D A STEVENS, J R DAHN. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc., 147: 1271(2000).

    [31] J R DAHN, T ZHENG, Y H LIU et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 270: 590(1995).

    [32] D A STEVENSA, J R DAHN. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc., 148: A803(2001).

    [33] E IRISARRI, A PONROUCH, M R PALACIN. Review-hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc., 162: A2476(2015).

    [39] X Y CHEN, C Y LIU, Y J FANG et al. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy, 4: 1133(2021).

    [41] J ZHENG, K F YU, X F WANG et al. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries. Diam. Relat. Mater., 131: 109593(2023).

    [44] S Q LI, K WANG, G F ZHANG et al. Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater., 32: 2200796(2022).

    [45] H X GONG, Y L CHEN, S C CHEN et al. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. ACS Energy Lett., 7: 4417(2022).

    [46] D QIU, C KANG, M LI et al. Biomass-derived mesopore- dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage. Carbon, 162: 595(2020).

    [47] C LIU, N XIAO, Y W WANG et al. Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries. Fuel Process Technol., 180: 173(2018).

    [48] R S FU, Z Z CHANG, C X SHEN et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. Electrochim. Acta, 260: 430(2018).

    [49] S F HUANG, Z P LI, B WANG et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater., 28: 1706294(2018).

    [50] H L ZHANG, F LI, C LIU et al. Poly(vinyl chloride) (PVC) coated idea revisited: influence of carbonization procedures on PVC-coated natural graphite as anode materials for lithium ion batteries. J. Phys. Chem. C, 112: 7767(2008).

    [51] J H LIN, C Y CHEN. Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery. Surf. Coat. Technol., 436: 128270(2022).

    [52] J H LIN, T H KO, W S KUO et al. Mesophase pitch carbon coated with phenolic resin for the anode of lithium-ion batteries. Energy Fuels, 24: 4090(2010).

    [53] W LUO, Y X WANG, S L CHOU et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy, 27: 255(2016).

    [54] S Y KIM, J LEE, B H KIM et al. Facile synthesis of carbon-coated silicon/graphite spherical composites for high- performance lithium-ion batteries. ACS Appl. Mater. Interf., 8: 12109(2016).

    [58] C CHEN, M Q WU, Z Q XU et al. Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na batteries. J. Colloid Interf. Sci., 538: 267(2019).

    [59] Z PEI, Q MENG, L WEI et al. Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater., 28: 55(2020).

    [62] X Z SUN, C L WANG, Y GONG et al. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage. Small, 14: 1802218(2018).

    [63] P Y ZHAO, J J TANG, C Y WANG et al. A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization. J. Solid State Electrochem., 21: 555(2017).

    [64] N DAHER, D HUO, C DAVOISNE et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries. ACS Appl. Energy Mater., 3: 6501(2020).

    [65] Y F DU, G H SUN, Y LI et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 178: 243(2021).

    [66] Q LI, X S LIU, Y TAO et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Nat. Sci. Rev., 9: nwac084(2022).

    [67] H LU, X CHEN, Y JIA et al. Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy, 64: 103903(2019).

    [68] H C TAO, S L DU, F ZHANG et al. Achieving a high-performance carbon anode through the P-O bond for lithium-ion batteries. ACS Appl. Mater. Interf., 10: 34245(2018).

    [69] B K GUO, J SHU, K TANG et al. Nano-Sn/hard carbon composite anode material with high-initial Coulombic efficiency. J. Power Sources, 177: 205(2008).

    [70] Q MENG, Y LU, F DING et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett., 4: 2608(2019).

    [71] J C WANG, J H ZHAO, X X HE et al. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-Coulombic-efficiency anode for sodium ion batteries. Sus. Mater. Technol., 33: e00446(2022).

    [72] Y J HAN, D B CHUNG, K NAKABAYASHI et al. Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochim. Acta, 213: 432(2016).

    Tools

    Get Citation

    Copy Citation Text

    Mengfei HU, Liping HUANG, He LI, Guojun ZHANG, Houzheng WU. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries[J]. Journal of Inorganic Materials, 2024, 39(1): 32

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 10, 2023

    Accepted: --

    Published Online: Mar. 28, 2024

    The Author Email: ZHANG Guojun (gjzhang@dhu.edu.cn), WU Houzheng (wuhz@sinosteelamc.com)

    DOI:10.15541/jim20230365

    Topics