Infrared and Laser Engineering, Volume. 52, Issue 5, 20220705(2023)

Design of thermal control system for high-speed communication optical module

Boren Guan1, Mingyu Li1, Renhui Deng2, Haiyang Hu2, and Zhe Lian2
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2The Equipment Department of Semight Instrument Co., Ltd., Suzhou 215000, China
  • show less
    Figures & Tables(35)
    Schematic diagram of TEC temperature control system
    Function of TEC cooling system
    Thermoelectric refrigeration components at DUT
    Package 3D model of DUT thermoelectric refrigeration components
    Flat model of cold plate heat exchanger
    Cold plate heat exchanger inlet and outlet water cooling temperature
    Cooling effect of thermoelectric refrigeration components
    Schematic diagram of TEC
    Voltage-current relationship curve of TEC
    Relationship between TEC cooling capacity and input current
    3D section diagram of cold plate heat exchanger
    Simulation of fluid velocity in cold plate
    3D section diagram of optimized cold plate heat exchanger
    The optimized fluid flow velocity simulation model of cold plate heat exchanger
    Relationship between the heat of the hot end of TEC and the input current
    Power supply circuit for TEC cooling system
    Structure drawing of the heat dissipation system
    Simulation of air path inside heat dissipation system
    Physical view of the heat dissipation system
    Test platform built by heat dissipation system and BERT instrument
    Limit temperature of TEC cooling surface for temperature control
    Comparison of heating and cooling efficiency of QSFP-DD
    Comparison of heating and cooling efficiency of QSFP-28
    • Table 1. Design indicators of TEC cooling system

      View table
      View in Article

      Table 1. Design indicators of TEC cooling system

      Temperature settings for TEC/℃Shell temperature of the module/℃Time/s
      −20-750-65120
      75-−2065-0120
    • Table 2. Relevant dimensions of cold plate heat exchanger

      View table
      View in Article

      Table 2. Relevant dimensions of cold plate heat exchanger

      NameSize/mmNameSize/mm
      Total height17Total length50
      Diameter of inlet6Diameter of outlet6
      Total width50Diameter of pipe6
      Spacing of pipes3.5Width of the left and right boundaries7.75
      Width of the front and back boundaries6Width of the upper and lower boundaries5.5
    • Table 3. Physical parameters of water at 30 ℃

      View table
      View in Article

      Table 3. Physical parameters of water at 30 ℃

      ParameterValue
      Thermal conductivity ${\lambda _f}/{\rm{W} }\cdot ({\rm{m} } \cdot {\rm{K} })^{-1}$$ 0.62 $
      Kinematic viscosity of fluid ${\upsilon _f}/{ {\rm{m} }^2} \cdot{\rm{s} ^{-1} }$$ 0.805 \times {10^{{{ - }}6}} $
      Fluid density $\;{\rho _f}/{\rm{kg} } \cdot { {\rm{m} }^{-3} }$$ 995.4 $
      Specific heat ${C_p}/{\rm{J} }\cdot({\rm{kg} } \cdot {\rm{K} })^{-1}$$ 4.17 \times {10^3} $
      Prandtl number Pr$ 5.42 $
    • Table 4. Basic parameter of TEC

      View table
      View in Article

      Table 4. Basic parameter of TEC

      NameNumerical valueConditions for testing
      ${I_{\max } }/{\rm{A}}$15$ {Q}_{c}=0,\delta T=\delta {T}_{\mathrm{max}},{T}_{h}=50 $
      ${U_{\max } }/{\rm{V}}$37.4$ {Q}_{c}=0,I={I}_{\mathrm{max}},{T}_{h}=50 $
      $ \delta {T}_{\mathrm{max}}/ $78$ {Q}_{c}=0,I={I}_{\mathrm{max}},{T}_{h}=50 $
      ${Q_{c\max } }/{\rm{W}}$294$ {Q}_{c}=0,\delta T=0,{T}_{h}=50 $
      $ {T}_{h\mathrm{max}}/ $200Instant
    • Table 5. Basic parameters of the temperature control module of TEC

      View table
      View in Article

      Table 5. Basic parameters of the temperature control module of TEC

      ParameterNumerical value
      VIN/V 24
      CH1
      VOUTmax/V 19.2
      IOUTmax/A 15
      Dimensions/mm3$ 55 \times 95 \times 28 $
    • Table 6. Temperature rise and fall time of different number of TECs

      View table
      View in Article

      Table 6. Temperature rise and fall time of different number of TECs

      The number of TEC/pcsThe number of fans/pcsThe duration of temperature rise/sThe duration of temperature decrease/s
      638795
      86130150
    • Table 7. Parameters of water pump

      View table
      View in Article

      Table 7. Parameters of water pump

      ParameterNumerical value
      Volum/mL8890
      Nominal voltage/V12
      Incoming current/A1.5±10%
      Motor speed/rpm4500±5%
      Lift/m6±1
      Quantity of flow/L·h−11200
      Power/W18
    • Table 8. Parameters of the air exhaust

      View table
      View in Article

      Table 8. Parameters of the air exhaust

      ParameterNumerical value
      Size/mm3$ 391 \times 121 \times 45 $
      Number of pipes/bar12×2
      Diameter of fans/cm12
    • Table 9. Paremeters of the fan

      View table
      View in Article

      Table 9. Paremeters of the fan

      ParameterNumerical value
      Size/mm3$ 120 \times 120 \times 38 $
      Working voltage/V12
      Noise/dBA55.5
      Rated power/W12.6
    • Table 10. Main parameters of the optical module used in the experiment

      View table
      View in Article

      Table 10. Main parameters of the optical module used in the experiment

      TypeType of moduleCentral wavelength/nm
      QSFP-DD400 G BASE LR41310
      QSFP-28100 G BASE IR41310
    • Table 11. Comparison of heating and cooling efficiency of QSFP-DD

      View table
      View in Article

      Table 11. Comparison of heating and cooling efficiency of QSFP-DD

      Number of testsThe duration of temperature rise/s The duration of temperature decrease/s
      Thermal control systemWater-cooling machineThermal control systemWater-cooling machine
      1101939593
      299959693
      399909593
      4103919593
      5100909592
      6102899592
      798929593
      8102909492
      9101939692
      10103919592
      Mean value100.891.495.192.5
    • Table 12. Comparison of heating and cooling efficiency of QSFP-28

      View table
      View in Article

      Table 12. Comparison of heating and cooling efficiency of QSFP-28

      Number of testsThe duration of temperature rise/s The duration of temperature decrease/s
      Thermal control systemWater-cooling machineThermal control systemWater-cooling machine
      159525649
      259505549
      358525749
      459525449
      559505749
      656505749
      757505749
      859505748
      959495749
      1059505749
      Mean value58.450.556.448.9
    Tools

    Get Citation

    Copy Citation Text

    Boren Guan, Mingyu Li, Renhui Deng, Haiyang Hu, Zhe Lian. Design of thermal control system for high-speed communication optical module[J]. Infrared and Laser Engineering, 2023, 52(5): 20220705

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication and sensing

    Received: Sep. 30, 2022

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email:

    DOI:10.3788/IRLA20220705

    Topics