Semiconductor Optoelectronics, Volume. 45, Issue 6, 990(2024)

Deep Learning-Based Apparent Defect Detection in Bridges

HOU Zhouyang1, YANG Liqiong2, ZHANG Guiying2, and XIAO Yufeng1
Author Affiliations
  • 1Faculty of Information Engineering, Mianyang 621010, CHN
  • 2Faculty of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, CHN
  • show less
    References(13)

    [8] [8] Zhang C, Chang C, Jamshidi M. Concrete bridge surface damage detection using a single-stage detector [J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409.

    [9] [9] Cha Y J, Choi W, Suh G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types [J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.

    [11] [11] Yu Z, Shen Y, Shen C. A real-time detection approach for bridge cracks based on YOLOv4-FPM [J]. Automation in Construction, 2021, 122: 103514.

    [13] [13] Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions [J]. arXiv preprint arXiv: 2112.05561, 2021.

    [14] [14] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression [J]. arXiv preprint arXiv: 2205.12740, 2022.

    [15] [15] Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices [C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.

    [16] [16] Han K, Wang Y, Tian Q, et al. Ghostnet: More features from cheap operations [C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.

    [17] [17] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv: 1704.04861, 2017.

    [18] [18] Chen J, Kao S, He H, et al. Run, Don't Walk: Chasing higher FLOPS for faster neural networks [C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.

    [19] [19] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.

    [20] [20] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.

    [21] [21] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module [C]// Proc. of the European Conference on Computer Vision (ECCV), 2018: 3-19.

    [22] [22] Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization [C]// Proc. of the IEEE International Conference on Computer Vision, 2017: 618-626.

    Tools

    Get Citation

    Copy Citation Text

    HOU Zhouyang, YANG Liqiong, ZHANG Guiying, XIAO Yufeng. Deep Learning-Based Apparent Defect Detection in Bridges[J]. Semiconductor Optoelectronics, 2024, 45(6): 990

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 3, 2024

    Accepted: Feb. 28, 2025

    Published Online: Feb. 28, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2024060301

    Topics