Optics and Precision Engineering, Volume. 32, Issue 24, 3632(2024)
An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation
[1] Y CHEN, Y Z SHEN, D J LIU. A simplified model of three dimensional-datum transformation adapted to big rotation angle. Geomatics and Information Science of Wuhan University, 29, 1101-1105(2004).
陈义, 沈云中, 刘大杰. 适用于大旋转角的三维基准转换的一种简便模型. 武汉大学学报(信息科学版), 29, 1101-1105(2004).
[2] 姚宜斌, 黄承猛, 李程春. 一种适用于大角度的三维坐标转换参数求解算法. 武汉大学学报(信息科学版), 37, 253-256(2012).
Y B YAO, C M HUANG, C C LI et al. A new algorithm for solution of transformation parameters of big rotation angle’s 3D coordinate. Geomatics and Information Science of Wuhan University, 37, 253-256(2012).
[3] Z P LÜ, J C WU, Y GONG. Improvement of a three-dimensional coordinate transformation model adapted to big rotation angle based on quaternion. Geomatics and Information Science of Wuhan University, 41, 547-553(2016).
吕志鹏, 伍吉仓, 公羽. 利用四元数改进大旋转角坐标变换模型. 武汉大学学报(信息科学版), 41, 547-553(2016).
[4] L LIU, Z G HE, Z Y ZHENG et al. An iterative algorithm for solving the transformation parameters of big rotation angle’s 3D coordinate. Science of Surveying and Mapping, 46, 65-69, 76(2021).
刘磊, 何占国, 郑作亚. 大角度三维坐标转换参数的一种迭代解法. 测绘科学, 46, 65-69, 76(2021).
[5] 姚吉利, 韩保民, 杨元喜. 罗德里格矩阵在三维坐标转换严密解算中的应用. 武汉大学学报(信息科学版), 31, 1094-1096, 1119(2006).
J L YAO, B M HAN, Y X YANG. Applications of lodrigues matrix in 3D coordinate transformation. Geomatics and Information Science of Wuhan University, 31, 1094-1096, 1119(2006).
[6] H S KUTOGLU, C MEKIK, H AKCIN. Effects of errors in coordinates on transformation parameters. Journal of Surveying Engineering, 129, 91-94(2003).
[7] H S KUTOGLU, P VANÍČEK. Effect of common point selection on coordinate transformation parameter determination. Studia Geophysica et Geodaetica, 50, 525-536(2006).
[8] 欧吉坤. 粗差的拟准检定法(QUAD法). 测绘学报, 28, 15-20(1999).
J K OU. Quasi-Accurate Detection of gross errors (QUAD). Acta Geodaetica et Cartographica Sinica, 28, 15-20(1999).
[9] W QU, H L CHEN, Q ZHANG et al. A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the GNSS crustal deformation model. Journal of Geodesy, 95, 125(2021).
[10] 郭建锋. 尺度因子的MAD估计及其在测量平差中的应用. 武汉大学学报(信息科学版), 46, 1636-1640(2021).
J F GUO. MAD estimate of scale factor and its applications in measurement adjustment. Geomatics and Information Science of Wuhan University, 46, 1636-1640(2021).
[11] 杨玲, 沈云中, 楼立志. 基于中位参数初值的等价权抗差估计方法. 测绘学报, 40, 28-32(2011).
L YANG, Y Z SHEN, L Z LOU. Equivalent weight robust estimation method based on Median parameter estimates. Acta Geodaetica et Cartographica Sinica, 40, 28-32(2011).
[12] Z H LIU, Z C LI, H HE et al. Robust solution of coordinate transformation parameters with a high breakdown point. Measurement Science and Technology, 34(2023).
[13] P L XU. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. Journal of Geodesy, 79, 146-159(2005).
[14] H S KUTOGLU, T AYAN. The role of common point distribution in obtaining reliable parameters for coordinate transformation. Applied Mathematics and Computation, 176, 751-758(2006).
[15] Y Z SHEN, L M HU, B F LI. Ill-posed problem in determination of coordinate transformation parameters with small area’s data based on bursa model. Acta Geodaetica et Cartographica Sinica, 35, 95-98(2006).
沈云中, 胡雷鸣, 李博峰. Bursa模型用于局部区域坐标变换的病态问题及其解法. 测绘学报, 35, 95-98(2006).
[16] 王玉成, 胡伍生. 坐标转换中公共点选取对于转换精度的影响. 现代测绘, 31, 13-15(2008).
Y C WANG, W S HU. Influence caused by public point selection on accuracy of coordinate conversion. Modern Surveying and Mapping, 31, 13-15(2008).
[17] 赵宝锋, 张雪, 蒋廷臣. 坐标转换模型及公共点选取对转换成果精度的影响. 淮海工学院学报(自然科学版), 18, 54-56(2009).
B F ZHAO, X ZHANG, T C JIANG. Effect of coordinate conversion model and the selected common points on the accuracy of conversion results. Journal of Jiangsu Ocean University (Natural Science Edition), 18, 54-56(2009).
[18] H L ZHANG, J R LIN, J G ZHU. Three-dimensional coordinate transformation accuracy and its influencing factors. Opto-Electronic Engineering, 39, 26-31(2012).
张皓琳, 林嘉睿, 邾继贵. 三维坐标转换精度及影响因素的研究. 光电工程, 39, 26-31(2012).
[19] Y Y ZHOU, G R PAN. Accuracy of coordinate transfer influenced by different distributions of common points. Journal of Geodesy and Geodynamics, 33, 105-109(2013).
周跃寅, 潘国荣. 公共点分布对坐标转换精度的影响. 大地测量与地球动力学, 33, 105-109(2013).
[20] H LI, W LIU, Y ZHANG et al. Model establishment and error compensation of laser tracker station-transfer. Opt. Precision Eng., 27, 771-783(2019).
李辉, 刘巍, 张洋. 激光跟踪仪多基站转站精度模型与误差补偿. 光学 精密工程, 27, 771-783(2019).
[21] Y REN, J R LIN, J G ZHU et al. Coordinate transformation uncertainty analysis in large-scale metrology. IEEE Transactions on Instrumentation and Measurement, 64, 2380-2388(2015).
[22] 丁克良, 靳婷婷, 蒋志强. 三维多点交会点位空间分布优化与精度分析. 光学 精密工程, 29, 691-700(2021).
K L DING, T T JIN, Z Q JIANG et al. Optimization and accuracy analysis of point spatial distribution based on three-dimensional multi-point intersection. Opt. Precision Eng., 29, 691-700(2021).
[23] H YIN, J J WANG, X TIAN. Common points selection in 3D datum transformation. Journal of Geomatics, 41, 14-17(2016).
尹晖, 王晶晶, 田鑫. 三维空间基准转换公共点选取的新方法. 测绘地理信息, 41, 14-17(2016).
[24] J T LI, W WANG, B SHI. Common point selection in coordinate transformation based on the distribution in quadrant. Engineering of Surveying and Mapping, 27, 66-70(2018).
李金涛, 王微, 石波. 坐标系转换中基于象限分布的公共点选取方法. 测绘工程, 27, 66-70(2018).
[25] 贺俊凯, 徐东升, 王明远. 顾及控制点空间分布的坐标转换模型研究. 全球定位系统, 47, 18-22(2022).
J K HE, D S XU, M Y WANG et al. Research on coordinate transformation model considering the spatial distribution of control points. GNSS World of China, 47, 18-22(2022).
[26] 罗传文. 点空间分析: 分维与均匀度. 科技导报, 22, 51-54(2004).
C W LUO. Point spatial analyses-fractal dimension and uniform index. Science & Technology Review, 22, 51-54(2004).
[27] Q LU. Fractal Description Method of Spatial Distribution Characteristics of Point Sets(2019).
陆权. 点集空间分布特征的分形描述方法(2019).
[28] T DING, X Y HE, W WANG et al. A common points selection method based on the uniformity of FLTMMS for pre-alignment of particle accelerators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1062, 169147(2024).
[29] Q M TAN, N G LU, M L DONG et al. Influence of geometrical distribution of common points on the accuracy of coordinate transformation. Applied Mathematics and Computation, 221, 411-423(2013).
[30] Q M TAN, S GAO, D L LI et al. Determination of reasonable geometrical distribution of markers for accurate motion parameters of rigid body, 1033-1037(2013).
[31] W B HUANG. Modern Adjustment Theory and Its Application(1992).
黄维彬. 近代平差理论及其应用(1992).
[32] 李宗春, 张冠宇, 冯其强. 工程测量学(2024).
Z C LI, G Y ZHANG, Q Q FENG et al. Engineering Surveying(2024).
Get Citation
Copy Citation Text
Zhonghe LIU, Zongchun LI, Hua HE. An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation[J]. Optics and Precision Engineering, 2024, 32(24): 3632
Category:
Received: Jul. 8, 2024
Accepted: --
Published Online: Mar. 11, 2025
The Author Email: LI Zongchun (13838092876@139.com)