Acta Photonica Sinica, Volume. 52, Issue 9, 0914001(2023)
Research Progress of Tunable Mid-infrared Solid State Laser Pumped by Near-infrared Laser(Invited)
[1] Guoguang REN, Yunian HUANG. Laser-based IRCM system defences for military and commercial aircraft. Laser & Infrared, 36, 1-6(2006).
[2] Xuelian CHU, Zhenan QIU, Yuansheng ZHANG et al. Experimental research of infrared detecting system disturbed by mid-wave infrared laser. Infrared Technology, 33, 440-442(2011).
[3] M W SIGRIST. Mid-infrared laser-spectroscopic sensing of chemical species. Journal of Advanced Research, 6, 529-533(2015).
[4] Yu SHEN, Nan ZONG, Ya WEN et al. Review on novel 6.45 μm laser scalpel, the medical applications and laser sources (invited). Electro-Optic Technology Application, 37, 10-18(2022).
[5] S DE BRUYNE, M M SPEECKAERT, J R DELANGHE. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Critical Reviews in Clinical Laboratory Sciences, 55, 1-20(2017).
[6] S BENSAID, A KACHENOURA, N COSTET et al. Noninvasive detection of bladder cancer using mid-infrared spectra classification. Expert Systems with Applications, 89, 333-342(2017).
[7] F YANG, J YAO, H XU et al. Midinfrared optical parametric amplifier with 6.4-11 μm range based on BaGa4Se7. IEEE Photonics Technology Letters, 27, 1100-1103(2015).
[8] W CHEN, E POULLET, J BURIE et al. Widely tunable continuous-wave mid-infrared radiation (5.5-11 μm) by difference-frequency generation in LiInS2 crystal. Applied Optics, 44, 4123-4129(2005).
[9] S EHRET, H SCHNEIDER. Generation of subpicosecond infrared pulses tunable between 5.2 µm and 18 µm at a repetition rate of 76 MHz. Applied Physics B-Lasers and Optics, 66, 27-30(1998).
[10] W SHI, Y J DING. A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications. Applied Physics Letters, 84, 1635-1637(2004).
[11] C QIAN, B YAO, B ZHAO et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation. Optics Letters, 44, 715-718(2019).
[12] M W HAAKESTAD, H FONNUM, E LIPPERT. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2. Optics Express, 22, 8556-8564(2014).
[13] B GUO, Q XIAO, S WANG et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser & Photonics Reviews, 13, 1800327(2019).
[14] C S GOLDENSTEIN, R M SPEARRIN, J B JEFFRIES et al. Infrared laser-absorption sensing for combustion gases. Progress in Energy and Combustion Science, 60, 132-176(2016).
[15] Huailin ZHANG, Tao WU, Xingdao HE. Progress of measurement of infrared absorption spectroscopy based on QCL. Spectroscopy and Spectral Analysis, 39, 2751-2757(2019).
[16] M C PHILLIPS, N HÔ. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array. Optics Express, 16, 1836-1845(2008).
[17] K HAASE, N KRÖGER-LUI, A PUCCI et al. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array. Journal of Biophotonics, 9, 61-66(2015).
[18] V G DMITRIEV, G G GURZADYAN, D N NIKOGOSYAN. Handbook of nonlinear optical crystals(1999).
[19] M BAUDISCH, M HEMMER, H PIRES et al. Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power. Optics Letters, 39, 5802-5805(2014).
[20] L I ISAENKO, A P YELISSEYEV. Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semiconductor Science and Technology, 31, 123001(2016).
[21] T SKAULI, K L VODOPYANOV, T J PINGUET et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. Optics Letters, 27, 628-630(2002).
[22] C KIELECK, M EICHHORN, A HIRTH et al. High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser. Optics Letters, 34, 262-264(2009).
[23] Y NI, H WU, M MAO et al. Growth and characterization of mid-far infrared optical material CdSe crystal. Optical Materials Express, 8, 1796-1805(2018).
[24] Y GUO, Y ZHOU, X LIN et al. Growth and characterizations of BaGa4S7 crystal. Optical Materials, 36, 2007-2011(2014).
[25] J YAO, W YIN, K FENG et al. Growth and characterization of BaGa4Se7 crystal. Journal of Crystal Growth, 346, 1-4(2012).
[26] X ZHAO, C LI, J BAI et al. Recalibration of the nonlinear optical coefficients of BaGa4Se7 crystal using second-harmonic-generation method. Optics Letters, 46, 5894-5897(2021).
[27] S C KUMAR, P G SCHUNEMANN, K T ZAWILSKI et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2. Journal of the Optical Society of America B-Optical Physics, 33, D44-D56(2016).
[28] L A POMERANZA, P G SCHUNEMANNA, D J MAGARRELLA et al. 1 μm-pumped OPO based on orientation-patterned GaP, 9347, 93470K(2015).
[29] P G SCHUNEMANN, L A POMERANZ, D J MAGARRELL. First OPO based on orientation-patterned gallium phosphide (OP-GaP), SW3O.1(2015).
[30] K L VODOPYANOV, J P MAFFETONE, I ZWIEBACK et al. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm. Applied Physics Letters, 75, 1204-1206(1999).
[31] T WANG, Z KANG, H ZHANG et al. Wide-tunable, high-energy AgGaS2 optical parametric oscillator. Optics Express, 14, 13001-13006(2006).
[32] F ROTERMUND, V PETROV, F NOACK. Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2. Optics Communications, 185, 177-183(2000).
[33] A O KOROGU, S B MIROV, W LEE et al. Tunable middle infrared downconversion in GaSe and AgGaS2. Optics Communications, 155, 307-312(1998).
[34] L WANG, Z CAO, H WANG et al. A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2. Optics Communications, 284, 358-362(2011).
[35] V PETROV, C REMPEL, K STOLBERG et al. Widely tunable continuous-wave mid-infrared laser source based on difference-frequency generation in AgGaS2. Applied Optics, 37, 4925-4928(1998).
[36] E A MIGAL, F V POTEMKIN, V M GORDIENKO. Highly efficient optical parametric amplifier tunable from near-to mid-IR for driving extreme nonlinear optics in solids. Optics Letters, 42, 5218-5221(2017).
[37] F ROTERMUND, V PETROV. Mid-infrared femtosecond optical parametric generator pumped by a Cr:forsterite regenerative amplifier at 1.25 µm. Applied Physics B-Lasers and Optics, 70, 731-732(2000).
[38] B GOLUBOVIC, M K REED. All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2. Optics Letters, 23, 1760-1762(1998).
[39] K J MCEWAN. High-power synchronously pumped AgGaS2 optical parametric oscillator. Optics Letters, 23, 667-669(1998).
[40] Chunhui YANG, Tianhui MA, Chongqiang ZHU et al. Nonlinear crystals GaSe in mid, far-infrared and terahertz range. Journal of the Chinese Ceramic Society, 45, 1402-1409(2017).
[41] Y LIU, J ZHAO, Z WEI et al. High-power, high-repetition-rate tunable longwave mid-IR sources based on DFG in the OPA regime. Optics Letters, 48, 1052-1055(2023).
[42] F MÖRZ, T STEINLE, H LINNENBANK et al. Alignment-free difference frequency light source tunable from 5 to 20 µm by mixing two independently tunable OPOs. Optics Express, 28, 11883-11891(2020).
[43] C GAIDA, M GEBHARDT, T HEUERMANN et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light: Science & Applications, 7, 94(2018).
[44] K FINSTERBUSCH, A BAYER, ZACHARIAS H. Tunable. narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe. Applied Physics B-Lasers and Optics, 79, 457-462(2004).
[45] Y HSU, C CHEN, J Y HUANG et al. Erbium doped GaSe crystal for mid-IR applications. Optics Express, 14, 5484-5491(2006).
[46] J YAO, D MEI, L BAI et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material. Inorganic Chemistry, 49, 9212-9216(2010).
[47] V BADIKOV, D BADIKOV, G SHEVYRDYAEVA et al. Phase-matching properties of BaGa4S7 and BaGa4Se7: Wide-bandgap nonlinear crystals for the mid-infrared. Physica Status Solidi-Rapid Research Letters, 5, 31-33(2011).
[48] C LI, Z LI, M SUN et al. High-pressure synthesis, growth and characterization of large-size BaGa4Se7 crystals. Journal of Crystal Growth, 577, 126405(2022).
[49] X LIN, G ZHANG, N YE. Growth and characterization of BaGa4S7: a new crystal for Mid-IR nonlinear optics. Crystal Growth & Design, 9, 1186-1189(2009).
[50] Xianghe MENG, Zhuang LI, Jiyong YAO. Property and application of new infrared nonlinear optical crystal BaGa4Se7. Chinese Journal of Lasers, 49, 0101005(2022).
[51] W YIN, K FENG, R HE et al. BaGa2MQ6 (M=Si, Ge; Q=S, Se): a new series of promising IR nonlinear optical materials. Dalton Transactions, 41, 5653-5661(2012).
[52] A TYAZHEV, D KOLKE, G MARCHEV et al. Midinfrared optical parametric oscillator based on the wide-bandgap BaGa4S7 nonlinear crystal. Optics Letters, 37, 4146-4148(2012).
[53] F YANG, J YAO, H XU et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal. Optics Letters, 38, 3903-3905(2013).
[54] N Y KOSTYUKOVA, A A BOYKO, V BADIKOV et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm. Optics Letters, 41, 3667-3670(2016).
[55] Y HE, D XU, J YAO et al. Intracavity-pumped, mid-infrared tandem optical parametric oscillator based on BaGa4Se7 crystal. IEEE Photonics Journal, 11, 1300109(2019).
[56] F YANG, J YAO, Y GUO et al. High-energy continuously tunable 8-14 μm picosecond coherent radiation generation from BGSe-OPA pumped by 1 064 nm laser. Optics and Laser Technology, 125, 106040(2020).
[57] Y HE, Y GUO, D XU et al. High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference-frequency generation. Optics Express, 27, 9241-9249(2019).
[59] D XU, J ZHANG, Y HE et al. High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal. Optics Letters, 45, 5287-5290(2020).
[60] B WU, Y ZHANG, Y ZUO et al. High energy mid-infrared laser pulse output from a BaGa4Se7crystal-based optical parametric oscillator. Optics Letters, 45, 4595-4598(2020).
[61] M SUN, Z CAO, J YAO et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal. Optics Express, 27, 4014-4023(2019).
[62] M KANG, Y DENG, J YAO et al. High power and efficient 4.43 µm BaGa4Se7 optical parametric oscillator pumped at 1064 nm. Photonics, 9, 105(2022).
[63] Y HE, C YAN, K CHEN et al. High repetition rate, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 1 µm Nd:YAG laser. Applied Science, 12, 7197(2022).
[64] G LIU, Z ZHANG, C LI et al. Comparison of a high-power 3.75 µm BaGa4Se7 OPO based on a plane-parallel resonator and an unstable resonator with a Gaussian reflectivity mirror. Applied Optics, 61, 7330-7335(2022).
[65] J YUAN, C LI, B YAO et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser. Optics Express, 24, 6083-6087(2016).
[66] K YANG, G LIU, C LI et al. Research on performance improvement technology of a BaGa4Se7 mid-infrared optical parametric oscillator. Optics Letters, 45, 6418-6421(2020).
[67] L ISAENKO, A YELISSEYEV, S LOBANOV et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Crystal Research and Technology, 38, 379-387(2003).
[68] Tianhui MA, Chunhui YANG, Liang SUN et al. Synthesis and characterization of orthorhombic LiGaS2. Materials Science & Technology, 20, 121-126(2012).
[69] T MA, C YANG, C ZHU et al. Preparation and structure characteristics of orthorhombic and chalcopyrite LiGaSe2. Journal of the Chinese Ceramic Society, 38, 1996-2000(2010).
[70] Liang SUN, Chunhui YANG, Tianhui MA et al. Nonlinear optical crystals LiBX2 (B=Ga, In; X=S, Se, Te). Progress in Chemistry, 26, 293-302(2014).
[71] S N SMETANIN, M JELÍNEK, V KUBECEK et al. 50-µJ level, 20-picosecond, narrowband difference-frequency generation at 4.6, 5.4, 7.5, 9.2, and 10.8 µm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings. Optical Materials Express, 10, 1881-1890(2020).
[72] V PETROV, A YELISSEYEV, L ISAENKO et al. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2. Applied Physics B-Lasers and Optics, 78, 543-546(2004).
[73] A TYAZHEV, V VEDENYAPIN, G MARCHEV et al. Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2. Optical Materials, 35, 1612-1615(2013).
[74] V VEDENYAPIN, A BOYKO, D KOLKER et al. LiGaSe2 optical parametric oscillator pumped by a Q-switched Nd:YAG laser. Laser Physics Letters, 13, 115401(2016).
[75] S B PENWELL, L WHALEY-MAYDA, A TOKMAKOFF. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source. Optics Letters, 43, 1363-1366(2018).
[76] Z HEINER, L WANG, V PETROV et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1 750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier. Optics Express, 27, 15289-15297(2019).
[77] Q BOURNET, F GUICHARD, M NATILE et al. Enhanced intrapulse difference frequency generation in the mid-infrared by a spectrally dependent polarization state. Optics Letters, 47, 261-264(2022).
[78] Q BOURNET, M JONUSAS, A ZHENG et al. Inline amplification of mid-infrared intrapulse difference frequency generation. Optis Letters, 47, 4885-4888(2022).
[79] I PUPEZA, M HUBER, M TRUBETSKOV et al. Field-resolved infrared spectroscopy of biological systems. Nature, 577, 52-59(2020).
[80] L ISAENKO, I VASILYEVA, A YELISSEYEV et al. Growth and characterization of LiInS2 single crystals. Journal of Crystal Growth, 218, 313-322(2000).
[81] Shanpeng WANG, Xutang TAO, Chunming DONG et al. Synthesis and properties of LiInS2 polycrystalline materials. Journal of Synthetic Crystals, 35, 1167-1171(2006).
[82] S WANG, Z GAO, X ZHANG et al. Crystal growth and effects of annealing on optical and electrical properties of mid-Infrared single crystal LiInS2. Crystal Growth & Design, 14, 5957-5961(2014).
[83] L ISAENKO, A YELISSEYEV, S LOBANOV et al. LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared. Journal of Applied Physics, 91, 9475-9480(2002).
[84] S WANG, X ZHANG, X ZHANG et al. Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal. Journal of Crystal Growth, 401, 150-155(2014).
[85] N JIA, S WANG, Z GAO et al. Optimized growth of large-sized LiInSe2 crystals and the electric-elastic properties. Crystal Growth & Design, 17, 5875-5880(2017).
[86] S WANG, C MA, L SUN et al. Optimized Bridgman growth and quality improvement of LiInSe2 crystal by annealing in Li2Se vapor atmosphere. Journal of Alloys and Compounds, 904, 163991(2022).
[87] S WANG, S DAI, N JIA et al. Tunable 7-12 μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal. Optics Letters, 42, 2098-2101(2017).
[88] T MA, C ZHU, Z LEI et al. Growth and characterization of LiInSe2 single crystals. Journal of Crystal Growth, 415, 132-138(2015).
[89] F ROTERMUND, V PETROV, F N L ISAENKO et al. Optical parametric generation of femtosecond pulses up to 9 mm with LiInS2 pumped at 800 nm. Applied Physics Letters, 78, 2623-2625(2001).
[90] L I STOYCHEV, M B DANAILOVC, A A DEMIDOVICHC et al. DFG-based mid-IR laser system for muounic-hydrogen spectroscopy, 9135, 91350J(2014).
[91] L I STOYCHEV, H CABRERA, J J SUÁREZ-VARGAS et al. DFG-based mid-IR tunable source with 0.5 mJ energy and a 30 pm linewidth. Optics Letters, 45, 5526-5529(2020).
[92] J ZONDY, V VEDENYAPIN, A YELISSEYEV et al. LiInSe2 nanosecond optical parametric oscillator. Optics Letters, 30, 2460-2462(2005).
[93] G MARCHEV, A TYAZHEV, V VEDENYAPIN et al. Nd:YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 µm. Optics Express, 17, 13441-13446(2009).
[94] M BEUTLER, I RIMKE, E BÜTTNER et al. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources. Optics Letters, 39, 4353-4355(2014).
[95] S DAI, N JIA, J CHEN et al. Picosecond mid-infrared optical parametric amplifier based on LiInSe2 with tenability extending from 3.6 to 4.8 μm. Optics Express, 25, 12860-12866(2017).
[96] P G SCHUNEMANN, K T ZAWILSKI, T M POLLAK et al. New nonlinear optical crystal for mid-IR OPOs: CdSiP2, MG6(2008).
[97] G ZHANG, X TAO, H RUAN et al. Growth of CdSiP2 single crystals by self-seeding vertical Bridgman method. Journal of Crystal Growth, 340, 197-201(2012).
[98] Guodong ZHANG, Kui CHENG, Longzhen ZHANG et al. Synthesis and growth of min-infrared nonlinear optical crystal CdSiP2. Journal of Synthetic Crystals, 49, 1494-1498, 1504(2020).
[99] L FAN, S ZHU, B ZHAO et al. Growth of CdSiP2 single crystals by double-walled quartz ampoule technique. Journal of Crystal Growth, 364, 62-66(2013).
[100] Shengling WU, Beijun ZHAO, Shifu ZHU et al. Study on growth and explosion-proof technologies of CdSiP2 single crystal. Journal of Synthetic Crystals, 43, 492-496(2014).
[101] Hui YANG, Shifu ZHU, Beijun ZHAO. Study on the growth and properties of large infrared nonlinear optical crystal LiInS2. Journal of Synthetic Crystals, 41, 11-14, 19(2012).
[102] V PETROV, P G SCHUNEMANN, K T ZAWILSKI et al. Noncritical singly resonant optical parametric oscillator operation near 6.2 μm based on a CdSiP2 crystal pumped at 1064 nm. Optics Letters, 34, 2399-2401(2009).
[103] G MARCHEV, A TYAZHEV, V PETROV et al. Optical parametric generation in CdSiP2 at 6.125 μm pumped by 8 ns long pulses at 1064 nm. Optics Letters, 37, 740-742(2012).
[104] B COLE, L GOLDBERG, J NETTLETON et al. Compact 12 mJ mid-IR pulsed source using an intracavity KTA OPO followed by a CSP OPA, 11259, 1125907(2020).
[105] S C KUMAR, A AGNESI, P DALLOCCHIO et al. Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm. Optics Letters, 36, 3236-3238(2011).
[106] Y JIA, K HANKA, K T ZAWILSKI et al. Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2. Optics Express, 26, 10833-10841(2018).
[107] N AMIUNE, K T ZAWILSKI, P G SCHUNEMANN et al. Pump tuning of a mid-infrared whispering gallery optical parametric oscillator. Optics Express, 30, 41084-41091(2022).
[108] A PEREMANS, D LIS, F CECCHET et al. Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 μm. Optics Letters, 34, 3053-3055(2009).
[109] O CHALUS, P G SCHUNEMANN, K T ZAWILSKI et al. Optical parametric generation in CdSiP2. Optics Letters, 35, 4142-4144(2010).
[110] S C KUMAR, J KRAUTH, A STEINMANN et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2. Optics Letters, 40, 1398-1401(2015).
[111] S C KUMAR, A ESTEBAN-MARTIN, A SANTANA et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2. Optics Letters, 41, 3355-3358(2016).
[112] S C KUMAR, K T ZAWILSKI, P G SCHUNEMANN et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2. Optics Letters, 42, 3606-3609(2017).
[113] V PETROV, G MARCHEV, P G SCHUNEMANN et al. Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm. Optics Letters, 35, 1230-1232(2010).
[114] S C KUMAR, M JELÍNEK, M BAUDISCH et al. Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2. Optics Express, 20, 15703-15709(2012).
[115] V RAMAIAH-BADARLA, S C KUMAR, A ESTEBAN-MARTIN et al. Ti:sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2. Optics Letters, 41, 1708-1711(2016).
[116] C F O'DONNELL, S C KUMAR, K T ZAWILSKI et al. Critically phase-matched Ti:sapphire-laser pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2. Optics Letters, 43, 1507-1510(2018).
[117] C F O'DONNELL, S C KUMAR, K T ZAWILSKI et al. Single-Stage Ti:Sapphire-pumped deep-infrared optical parametric oscillator based on CdSiP2. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1601409(2018).
[118] L POMERANZ, J MCCARTHY, R DAY et al. Efficient, 2-5 μm tunable CdSiP2 optical parametric oscillator pumped by a laser source at 1.57 μm. Optics Letters, 43, 130-133(2018).
[119] R T MURRAY, A M CHANDRAN, R A BATTLE et al. Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm. Optics Letters, 46, 2039-2042(2021).
[120] S GUHA, J O BARNES, P G SCHUNEMANN. Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide. Optics Express, 5, 2911-2923(2015).
[121] G INSERO, C CLIVATI, D D'AMBROSIO et al. Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals. Optics Letters, 41, 5114-5117(2016).
[122] J WEI, S C KUMAR, H YE et al. Nanosecond difference-frequency generation in orientation-patterned gallium phosphide. Optics Letters, 42, 2193-2196(2017).
[123] H YE, S C KUMAR, J WEI et al. Singly-resonant pulsed optical parametric oscillator based on orientation-patterned gallium phosphide. Optics Letters, 43, 2454-2457(2018).
[124] L MAIDMENT, P G SCHUNEMANN, D T REID. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Optics Letters, 41, 4261-4264(2016).
[125] C F O'DONNELL, S C KUMAR, P G SCHUNEMANN et al. Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide. Optics Letters, 44, 4570-4573(2019).
[126] P G SCHUNEMANN, K JOHNSON, C FARRELL et al. Continuous wavelength tuning from 3.9-12 µm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs. Optical Materials Express, 11, 654-663(2021).
[127] J C CASALS, S PARSA, S C KUMAR et al. Picosecond difference-frequency-generation in orientation-patterned gallium phosphide. Optics Express, 25, 19595-19602(2017).
Get Citation
Copy Citation Text
Kai CHEN, Degang XU, Yixin HE, Kai ZHONG, Jining LI, Yuye WANG, Jianquan YAO. Research Progress of Tunable Mid-infrared Solid State Laser Pumped by Near-infrared Laser(Invited)[J]. Acta Photonica Sinica, 2023, 52(9): 0914001
Category:
Received: Jul. 17, 2023
Accepted: Aug. 14, 2023
Published Online: Oct. 24, 2023
The Author Email: XU Degang (xudegang@tju.edu.cn)