Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618005(2024)

Research Progress on Fast Fluorescence Lifetime Imaging Microscopy and Its in vivo Applications (Invited)

Fangrui Lin, Yiqiang Wang, Min Yi, Chenshuang Zhang, Liwei Liu, and Junle Qu*
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    References(117)

    [1] Lakowicz J R[M]. Principles of fluorescence spectroscopy(2006).

    [2] Suhling K, French P M W, Phillips D. Time-resolved fluorescence microscopy[J]. Photochemical & Photobiological Sciences, 4, 13-22(2005).

    [3] Okabe K, Inada N, Gota C et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J]. Nature Communications, 3, 705(2012).

    [4] Szmacinski H, Lakowicz J R. Sodium Green as a potential probe for intracellular sodium imaging based on fluorescence lifetime[J]. Analytical Biochemistry, 250, 131-138(1997).

    [5] Zheng K Y, Jensen T P, Rusakov D A. Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging[J]. Nature Protocols, 13, 581-597(2018).

    [6] Sha J, Liu W M, Zheng X L et al. Polarity-sensitive probe for two-photon fluorescence lifetime imaging of lipid droplets in vitro and in vivo[J]. Analytical Chemistry, 95, 15350-15356(2023).

    [7] Zhao Y H, Liu L W, Luo T et al. A platinum-porphine/poly(perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging[J]. Sensors and Actuators B: Chemical, 269, 88-95(2018).

    [8] Pliss A, Levchenko S M, Liu L X et al. Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging[J]. Nature Communications, 10, 455(2019).

    [9] Lin F R, Das P, Zhao Y H et al. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells[J]. Biomedical Optics Express, 11, 149-159(2019).

    [10] Levchenko S M, Pliss A, Peng X et al. Fluorescence lifetime imaging for studying DNA compaction and gene activities[J]. Light, Science & Applications, 10, 224(2021).

    [11] Kashirina A S, López-Duarte I, Kubánková M et al. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM[J]. Scientific Reports, 10, 14063(2020).

    [12] Zou G J, Yu W H, Xu Y J et al. Investigation of apoptosis based on fluorescence lifetime imaging microscopy with a mitochondria-targeted viscosity probe[J]. RSC Advances, 11, 38750-38758(2021).

    [13] Colom A, Derivery E, Soleimanpour S et al. A fluorescent membrane tension probe[J]. Nature Chemistry, 10, 1118-1125(2018).

    [14] Shimizu T, Murakoshi H, Matsumoto H et al. Tension sensor based on fluorescence resonance energy transfer reveals fiber diameter-dependent mechanical factors during myelination[J]. Frontiers in Cellular Neuroscience, 15, 685044(2021).

    [15] Huang M J, Liang X Y, Zhang Z X et al. Carbon dots for intracellular pH sensing with fluorescence lifetime imaging microscopy[J]. Nanomaterials, 10, 604(2020).

    [16] Sanders R, Draaijer A, Gerritsen H C et al. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy[J]. Analytical Biochemistry, 227, 302-308(1995).

    [17] Galletly N P, McGinty J, Dunsby C et al. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin[J]. The British Journal of Dermatology, 159, 152-161(2008).

    [18] Butte P V, Fang Q Y, Javier J A et al. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy[J]. Journal of Biomedical Optics, 15, 027008(2010).

    [19] Wang Y L, Song C, Wang M Y et al. Rapid, label-free, and highly sensitive detection of cervical cancer with fluorescence lifetime imaging microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6801307(2016).

    [20] Cicchi R, Crisci A, Cosci A et al. Time- and spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ[J]. Optics Express, 18, 3840-3849(2010).

    [21] Shen B L, Yan J S, Wang S Q et al. Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system[J]. Theranostics, 10, 1849-1860(2020).

    [22] Yaseen M A, Sakadžić S, Wu W C et al. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH[J]. Biomedical Optics Express, 4, 307-321(2013).

    [23] Zhu X Y, Liu X, Zhang H X et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles[J]. Angewandte Chemie: International Edition, 60, 23545-23551(2021).

    [24] Kennedy G T, Manning H B, Elson D S et al. A fluorescence lifetime imaging scanning confocal endomicroscope[J]. Journal of Biophotonics, 3, 103-107(2010).

    [25] Marcu L. Fluorescence lifetime techniques in medical applications[J]. Annals of Biomedical Engineering, 40, 304-331(2012).

    [26] Ueda H H, Nagasawa Y, Murakoshi H. Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy[J]. Neuroscience Research, 179, 31-38(2022).

    [27] Qu J L, Niu H B, Guo B P. Fluorescence lifetime imaging microscopy and its applications[J]. Acta Photonica Sinica, 26, 809-817(1997).

    [28] Liu X B, Lin D Y, Wu Q Q et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application[J]. Acta Physica Sinica, 67, 178701(2018).

    [29] Liu L X, Qi M J, Gao P et al. Application of fluorescence lifetime imaging in cancer diagnosis (invited)[J]. Acta Photonica Sinica, 50, 1017001(2021).

    [30] Datta R, Heaster T M, Sharick J T et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications[J]. Journal of Biomedical Optics, 25, 071203(2020).

    [31] Yguerabide J. Nanosecond fluorescence spectroscopy of macromolecules[M]. Methods in enzymology, 498-578(1972).

    [32] Becker W, Su B, Holub O et al. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors[J]. Microscopy Research and Technique, 74, 804-811(2011).

    [33] Krstajić N, Poland S, Levitt J et al. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays[J]. Optics Letters, 40, 4305-4308(2015).

    [34] Tyndall D, Rae B R, Li D D U et al. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS[J]. IEEE Transactions on Biomedical Circuits and Systems, 6, 562-570(2012).

    [35] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020).

    [36] Koenig M, Orthaus-Mueller S, Dowler R et al. Rapid flim: the new and innovative method for ultra-fast imaging of biological processes[J]. Biophysical Journal, 112, 298a(2017).

    [37] Becker W, Bermann A, Smietana S. Fast-acquisition TCSPC FLIM with sub-25-ps IRF width[J]. Proceedings of SPIE, 10882, 1088206(2019).

    [38] Liu S C, Zhang Z M, Zheng J Y et al. Parallelized fluorescence lifetime imaging microscopy (FLIM) based on photon reassignment[J]. Optics Communications, 421, 83-89(2018).

    [39] Qi J, Shao Y H, Liu L X et al. Fast flexible multiphoton fluorescence lifetime imaging using acousto-optic deflector[J]. Optics Letters, 38, 1697-1699(2013).

    [40] Yan W, Peng X, Qi J et al. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors[J]. Journal of Biomedical Optics, 19, 116004(2014).

    [41] Poland S P, Krstajić N, Monypenny J et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging[J]. Biomedical Optics Express, 6, 277-296(2015).

    [42] Poland S P, Chan G K, Levitt J A et al. Multifocal multiphoton volumetric imaging approach for high-speed time-resolved Förster resonance energy transfer imaging in vivo[J]. Optics Letters, 43, 6057-6060(2018).

    [43] Erdogan A T, Walker R, Finlayson N et al. A CMOS SPAD line sensor with per-pixel histogramming TDC for time-resolved multispectral imaging[J]. IEEE Journal of Solid-State Circuits, 54, 1705-1719(2019).

    [44] Mai H N, Jarman A, Erdogan A T et al. Development of a high-speed line-scanning fluorescence lifetime imaging microscope for biological imaging[J]. Optics Letters, 48, 2042-2045(2023).

    [45] Becker W, Hirvonen L M, Milnes J et al. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode[J]. The Review of Scientific Instruments, 87, 093710(2016).

    [46] Suhling K, Hirvonen L M, Becker W et al. Wide-field TCSPC-based fluorescence lifetime imaging (FLIM) microscopy[J]. Proceedings of SPIE, 9858, 98580J(2016).

    [47] Oleksiievets N, Thiele J C, Weber A et al. Wide-field fluorescence lifetime imaging of single molecules[J]. The Journal of Physical Chemistry A, 124, 3494-3500(2020).

    [48] Hirvonen L M, Becker W, Milnes J et al. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector[J]. Applied Physics Letters, 109, 071101(2016).

    [49] Hirvonen L M, Nedbal J, Almutairi N et al. Lightsheet fluorescence lifetime imaging microscopy with wide-field time-correlated single photon counting[J]. Journal of Biophotonics, 13, e201960099(2020).

    [50] Samimi K, Desa D E, Lin W et al. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array[J]. Journal of Biomedical Optics, 28, 066502(2023).

    [51] Wayne M, Ulku A, Ardelean A et al. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for FLIM and phasor imaging applications[J]. IEEE Transactions on Electron Devices, 69, 2865-2872(2022).

    [52] Ulku A C, Bruschini C, Antolovic I M et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6801212(2019).

    [53] Smith J T, Rudkouskaya A, Gao S et al. Characterization of a large gated SPAD array for widefield NIR fluorescence lifetime imaging in vitro and in vivo[J]. Biophysical Journal, 121, 415a(2022).

    [54] Bowman A J, Klopfer B B, Juffmann T et al. Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy[J]. Nature Communications, 10, 4561(2019).

    [55] Li R, Liu A, Wu T et al. Digital scanned laser light-sheet fluorescence lifetime microscopy with wide-field time-gated imaging[J]. Journal of Microscopy, 279, 69-76(2020).

    [56] Butte P V, Mamelak A N, Nuno M et al. Fluorescence lifetime spectroscopy for guided therapy of brain tumors[J]. NeuroImage, 54, S125-S135(2011).

    [57] Unger J, Hebisch C, Phipps J E et al. Real-time diagnosis and visualization of tumor margins in excised breast specimens using fluorescence lifetime imaging and machine learning[J]. Biomedical Optics Express, 11, 1216-1230(2020).

    [58] Marsden M, Weaver S S, Marcu L et al. Intraoperative mapping of parathyroid glands using fluorescence lifetime imaging[J]. The Journal of Surgical Research, 265, 42-48(2021).

    [59] Weyers B W, Birkeland A C, Marsden M A et al. Intraoperative delineation of p16+ oropharyngeal carcinoma of unknown primary origin with fluorescence lifetime imaging: preliminary report[J]. Head & Neck, 44, 1765-1776(2022).

    [60] Qu J L, Liu L X, Chen D N et al. Temporally and spectrally resolved sampling imaging with a specially designed streak camera[J]. Optics Letters, 31, 368-370(2006).

    [61] Komura M, Itoh S. Fluorescence measurement by a streak camera in a single-photon-counting mode[J]. Photosynthesis Research, 101, 119-133(2009).

    [62] Krishnan R V, Saitoh H, Terada H et al. Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera[J]. Review of Scientific Instruments, 74, 2714-2721(2003).

    [63] Kusumi A, Tsuji A, Murata M et al. Development of a streak-camera-based time-resolved microscope fluorometer and its application to studies of membrane fusion in single cells[J]. Biochemistry, 30, 6517-6527(1991).

    [64] Camborde L, Jauneau A, Brière C et al. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy[J]. Nature Protocols, 12, 1933-1950(2017).

    [65] Maklygina Y S, Romanishkin I D, Skobeltsin A S et al. Time-resolved fluorescence imaging technique for rat brain tumors analysis[J]. Journal of Physics: Conference Series, 2058, 012028(2021).

    [66] Liu L X, Li Y H, Sun L G et al. Fluorescence lifetime imaging microscopy using a streak camera[J]. Proceedings of SPIE, 8948, 89482L(2014).

    [67] Chen D N, Li H, Yu B et al. Four-dimensional multi-particle tracking in living cells based on lifetime imaging[J]. Nanophotonics, 11, 1537-1547(2022).

    [68] Ma Y Y, Lee Y, Best-Popescu C et al. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2004176118(2021).

    [69] Wang X F, Uchida T, Minami S. A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube[J]. Applied Spectroscopy, 43, 840-845(1989).

    [70] Yahav G, Pawar S, Weber Y et al. Imaging the rotational mobility of carbon dot-gold nanoparticle conjugates using frequency domain wide-field time-resolved fluorescence anisotropy[J]. Journal of Biomedical Optics, 28, 056001(2023).

    [71] Zhang Y D, Guldner I H, Nichols E L et al. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains[J]. Optica, 8, 885-897(2021).

    [72] Serafino M J, Applegate B E, Jo J A. Direct frequency domain fluorescence lifetime imaging using field programmable gate arrays for real time processing[J]. The Review of Scientific Instruments, 91, 033708(2020).

    [73] Clayton A H A, Hanley Q S, Arndt-Jovin D J et al. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)[J]. Biophysical Journal, 83, 1631-1649(2002).

    [74] Erkkilä M T, Bauer B, Hecker-Denschlag N et al. Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: an ex vivo feasibility study[J]. Journal of Biophotonics, 12, e201800378(2019).

    [75] Reichert D, Erkkilä M T, Holst G et al. Towards real-time wide-field fluorescence lifetime imaging of 5-ALA labeled brain tumors with multi-tap CMOS cameras[J]. Biomedical Optics Express, 11, 1598-1616(2020).

    [76] Ducourthial G, Leclerc P, Mansuryan T et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal[J]. Scientific Reports, 5, 18303(2015).

    [77] Sparks H, Kondo H, Hooper S et al. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy[J]. Nature Communications, 9, 2662(2018).

    [78] Warren S C, Nobis M, Magenau A et al. Removing physiological motion from intravital and clinical functional imaging data[J]. eLife, 7, e35800(2018).

    [79] Streich L, Boffi J C, Wang L et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).

    [80] Soulet D, Paré A, Coste J et al. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy[J]. PLoS One, 8, e53942(2013).

    [81] Maus M, Cotlet M, Hofkens J et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules[J]. Analytical Chemistry, 73, 2078-2086(2001).

    [82] Kim J, Seok J, Lee H et al. Penalized maximum likelihood estimation of lifetime and amplitude images from multi-exponentially decaying fluorescence signals[J]. Optics Express, 21, 20240-20253(2013).

    [83] Rowley M I, Coolen A C C, Vojnovic B et al. Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging[J]. PLoS One, 11, e0158404(2016).

    [84] Wang S L, Chacko J V, Sagar A K et al. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy[J]. Biomedical Optics Express, 10, 5497-5517(2019).

    [85] Yang S, Lee J, Lee Y M et al. Estimation of multiexponential fluorescence decay parameters using compressive sensing[J]. Journal of Biomedical Optics, 20, 096003(2015).

    [86] Zhang X, Lin D Y, Niu J J et al. Low photon count fluorescence lifetime analysis based on alternating descent conditional gradient method[J]. Chinese Journal of Lasers, 47, 207022(2020).

    [87] Chen P F, Kang Q, Niu J J et al. Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm[J]. Biomedical Optics Express, 14, 1718-1731(2023).

    [88] Ranjit S, Malacrida L, Jameson D M et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach[J]. Nature Protocols, 13, 1979-2004(2018).

    [89] Zhou T, Luo T, Song J et al. Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier[J]. Analytical Chemistry, 90, 2170-2177(2018).

    [90] Wu G, Nowotny T, Zhang Y L et al. Artificial neural network approaches for fluorescence lifetime imaging techniques[J]. Optics Letters, 41, 2561-2564(2016).

    [91] Yao R Y, Ochoa M, Yan P K et al. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing-a deep learning approach[J]. Light, Science & Applications, 8, 26(2019).

    [92] Smith J T, Yao R Y, Sinsuebphon N et al. Fast fit-free analysis of fluorescence lifetime imaging via deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 24019-24030(2019).

    [93] Xiao D, Chen Y, Li D D U. One-dimensional deep learning architecture for fast fluorescence lifetime imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 7000210(2021).

    [94] Chen Y I, Chang Y J, Liao S C et al. Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells[J]. Communications Biology, 5, 18(2022).

    [95] Zang Z Y, Xiao D, Wang Q et al. Fast analysis of time-domain fluorescence lifetime imaging via extreme learning machine[J]. Sensors, 22, 3758(2022).

    [96] Xiao D, Sapermsap N, Chen Y et al. Deep learning enhanced fast fluorescence lifetime imaging with a few photons[J]. Optica, 10, 944-951(2023).

    [97] Xiao D, Zang Z Y, Xie W J et al. Spatial resolution improved fluorescence lifetime imaging via deep learning[J]. Optics Express, 30, 11479-11494(2022).

    [98] Xiao D, Zang Z Y, Sapermsap N et al. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors[J]. Biomedical Optics Express, 12, 3450-3462(2021).

    [99] Adhikari M, Houhou R, Hniopek J et al. Review of fluorescence lifetime imaging microscopy (FLIM) data analysis using machine learning[J]. Journal of Experimental and Theoretical Analyses, 1, 44-63(2023).

    [100] Bowman A J, Kasevich M A. Resonant electro-optic imaging for microscopy at nanosecond resolution[J]. ACS Nano, 15, 16043-16054(2021).

    [101] Bowman A J, Huang C, Schnitzer M J et al. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo[J]. Science, 380, 1270-1275(2023).

    [102] Gómez C A, Fu B Y, Sakadžić S et al. Cerebral metabolism in a mouse model of Alzheimer’s disease characterized by two-photon fluorescence lifetime microscopy of intrinsic NADH[J]. Neurophotonics, 5, 045008(2018).

    [103] Hou S S, Yang J, Lee J H et al. Near-infrared fluorescence lifetime imaging of amyloid-β aggregates and tau fibrils through the intact skull of mice[J]. Nature Biomedical Engineering, 7, 270-280(2023).

    [104] Díaz-García C M, Lahmann C, Martínez-François J R et al. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor[J]. Journal of Neuroscience Research, 97, 946-960(2019).

    [105] Ni H W, Xu Z C, Li D Y et al. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 12, 1940005(2019).

    [106] Lin F R, Zhang C S, Zhao Y H et al. In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle[J]. Optics Letters, 47, 2137-2140(2022).

    [107] Alfonso-Garcia A, Bec J, Sridharan Weaver S et al. Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast[J]. Journal of Biophotonics, 13, e201900108(2020).

    [108] Marsden M, Fukazawa T, Deng Y C et al. FLImBrush: dynamic visualization of intraoperative free-hand fiber-based fluorescence lifetime imaging[J]. Biomedical Optics Express, 11, 5166-5180(2020).

    [109] Gorpas D, Davari P, Bec J et al. Time-resolved fluorescence spectroscopy for the diagnosis of oral lichen planus[J]. Clinical and Experimental Dermatology, 43, 546-552(2018).

    [110] Sun Y H, Hatami N, Yee M et al. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery[J]. Journal of Biomedical Optics, 15, 056022(2010).

    [111] Yankelevich D R, Ma D L, Liu J et al. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging[J]. The Review of Scientific Instruments, 85, 034303(2014).

    [112] Ma D L, Bec J, Gorpas D et al. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)[J]. Biomedical Optics Express, 6, 987-1002(2015).

    [113] Gorpas D, Phipps J, Bec J et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients[J]. Scientific Reports, 9, 1187(2019).

    [114] Marsden M, Weyers B W, Bec J et al. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning[J]. IEEE Transactions on Bio-Medical Engineering, 68, 857-868(2021).

    [115] Kantelhardt S R, Kalasauskas D, König K et al. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue[J]. Journal of Neuro-Oncology, 127, 473-482(2016).

    [116] Erkkilä M T, Reichert D, Hecker-Denschlag N et al. Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery[J]. Journal of Biomedical Optics, 25, 071202(2020).

    [117] Reichert D, Erkkilae M T, Gesperger J et al. Fluorescence lifetime imaging and spectroscopic co-validation for protoporphyrin IX-guided tumor visualization in neurosurgery[J]. Frontiers in Oncology, 11, 741303(2021).

    Tools

    Get Citation

    Copy Citation Text

    Fangrui Lin, Yiqiang Wang, Min Yi, Chenshuang Zhang, Liwei Liu, Junle Qu. Research Progress on Fast Fluorescence Lifetime Imaging Microscopy and Its in vivo Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Jan. 8, 2024

    Accepted: Feb. 19, 2024

    Published Online: Mar. 22, 2024

    The Author Email: Qu Junle (jlqu@szu.edu.cn)

    DOI:10.3788/LOP240467

    Topics