Microelectronics, Volume. 53, Issue 3, 465(2023)

Research Progress of High Density Interconnection Technology for SiC Power Devices

WANG Zhikuan1... FENG Zhihua2, CHEN Rong2, YAN Zipeng3, CUI Wei2, LU Ke2 and LIAO Xiyi3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(31)

    [1] [1] MOUAWAD B, SOUEIDAN M, FABREGUE D, et al. Application of the spark plasma sintering technique to low-temperature copper bonding [J]. IEEE Trans Compon Packag Manuf Technol, 2012, 2(4): 553-560.

    [2] [2] HAMIDI A, COTTET D. Parasitics in power electronics packaging [C] // Proc Int Symp Microelec (IMAPS). Long Beach, CA, USA. 2004: 1-6.

    [3] [3] ZHANG W, HUANG X, LIU Z, et al. A new package of high-voltage cascode gallium nitride device for megahertz operation [J]. IEEE Trans Power Electron, 2015, 31(2): 1344-1353.

    [4] [4] HAZRA S, MADHUSOODHANAN S, KARIMI MOGHADDAM G, et al. Design considerations and performance evaluation of 1200-V 100-A SiC MOSFET-based two-level voltage source converter [J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4257-4268.

    [5] [5] CHEN C, LUO F, KANG Y. A review of SiC power module packaging: layout, material system and integration [J]. CPSS Trans Power Electron Appl, 2017, 2(3): 170-186.

    [6] [6] CREE. Application considerations for silicon carbide MOSFETs [EB/OL]. https://www.wolfspeed.com, 2011.

    [7] [7] DEL ALAMO J A, JOH J. GaN HEMT reliability [J]. Microelectronics. Reliability, 2009, 49(9): 1200-1206.

    [8] [8] WEIDNER K, KASPAR M, SELIGER N. Planar interconnect technology for power module system integration [C] // Proc 7th Int Conf Integr Power Electron Syst (CIPS). Nuremberg, Germany. 2012: 1-5.

    [9] [9] LIANG Z X, NING P Q, WANG F, et al. A phase-leg power module packaged with optimized planar interconnections and integrated double-sided cooling [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 443-450.

    [10] [10] CHANG H R, BU J, KONG G, et al. 300 A 650 V 70 μm thin IGBTs with double-sided cooling [C] // Proc IEEE 23rd Int Symp Power Semicond Dev IC. San Diego, CA, USA. 2011: 320-323.

    [11] [11] ZHU Q, FORSYTH A, TODD R, et al. Thermal characterisation of a copper-clip-bonded IGBT module with double-sided cooling [C] // Proc IEEE Int Workshop Therm Investigations ICs Syst (THERMINIC). Amsterdam, The Netherlands. 2017: 1-6.

    [12] [12] WOO D R M, YUAN H H, LI J A J, et al. Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220 ℃ [C] // Proc IEEE 66th Electron Compon Technol Conf (ECTC). Las Vegas, NV, USA. 2016: 1190-1196.

    [13] [13] ZHANG H, ANG S S, MANTOOTH H A, et al. A high temperature, double-sided cooling SiC power electronics module [C] // Proc IEEE Energy Convers Congr Expo. Denver, CO, USA. 2013: 2877-2883.

    [14] [14] Seal S, Glover M D, Wallace A K, et al. Flip-chip bonded silicon carbide MOSFETs as a low parasitic alternative to wire- bonding [C] // Proc IEEE Workshop Wide Bandgap Power Devices Appl (WiPDA). Fayetteville, AR, USA. 2016: 194-199.

    [15] [15] SEAL S, WALLACE A K, ZUMBRO J, et al. Thermo- mechanical reliability analysis of flip-chip bonded silicon carbide Schottky diodes [C] // Proc IEEE Int Workshop Integrated Power Packaging (IWIPP). Delft, The Netherlands. 2017: 1-5.

    [16] [16] MANTOOTH H A, ANG S S. Packaging architectures for silicon carbide power electronic modules [C] // Proc Int Power Electron Conf. Niigata, Japan. 2018: 153-156.

    [17] [17] HORIO M, IIZUKA Y, IKEDA Y. Packaging technologies for SiC power modules [J]. Fuji Electr Rev, 2012, 58(2): 75-78.

    [18] [18] IKEDA Y, IIZUKA Y, HINATA Y, et al. Investigation on wirebond-less power module structure with high- density packaging and high reliability [C] // Proc IEEE 23rd Int Symp Power Semicond Dev IC. San Diego, CA, USA. 2011: 272-275.

    [19] [19] CHEN Z, YAO Y, BOROYEVICH D, et al. An ultra-fast SiC phase-leg module in modified hybrid packaging structure [C] // IEEE Energy Convers Congr Expo. Pittsburgh, PA, USA. 2014: 2880-2886.

    [20] [20] HUANG Z, LI Y, CHEN L, et al. A novel low inductive 3D SiC power module based on hybrid packaging and integration method [C] // IEEE Energy Convers Congr Expo. Cincinnati, OH, USA. 2017: 3995-4002.

    [21] [21] ANTHON A, ZHANG Z, ANDERSEN M A E. Comparison of a state of the art Si IGBT and next generation fast switching devices in a 4 kW boost converter [C] // IEEE Energy Convers Congr Expo. Montreal, QC, Canada. 2015: 3003-3011.

    [22] [22] YAN Q, YUAN X, GENG Y, et al. Performance evaluation of split output converters with SiC MOSFETs and SiC Schottky diodes [J]. IEEE Trans Power Electron, 2017, 32(1): 406- 422.

    [23] [23] WANG J, CHUNG H S H, LI R T H. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance [J]. IEEE Trans Power Electron, 2013, 28(1): 573-590.

    [24] [24] BIELA J, SCHWEIZER M, WAFFLER S, et al. SiC versus Si - evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors [J]. IEEE Transactions on Industry Applications, 2011, 58(7): 2872-2882.

    [25] [25] HOU F Z, WANG W B, CAO L Q, et al. Review of packaging schemes for power module [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 223-238.

    [26] [26] MARCHESINI J L, JEANNIN P O, AVENAS Y, et al. Implementation and switching behavior of a PCB-DBC IGBT module based on the power chip-on-chip 3-D concept [J]. IEEE Transactions on Industry Applications, 2017, 53(1): 362-370.

    [27] [27] LIANG Z, WYK J D V, LEE F C. Embedded power: a 3-D MCM integration technology for IPEM packaging application [J]. IEEE Trans Adv Packag, 2006, 29(3): 504-512.

    [28] [28] OSTMANN A, NEUMANN A, AUERSPERG J, et al. Integration of passive and active components into build-up layers [J]. IEEE Electron Packag Technol Conf. Singapore. 2002: 223-228.

    [29] [29] YIN L, KAPUSTA C, GOWDA A, et al. A wire-bondless packaging platform for silicon carbide power semiconductor devices [J]. J Electron Packag, 2018, 140(3): 031009.1-031109.8.

    [30] [30] MUSLU A M, SMET V, JOSHI Y. Compact SiC power module with integrated power delivery and cooling [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(12): 1939-1948.

    [31] [31] CHEN Z, HUANG A Q. High performance SiC power module based on repackaging of discrete SiC devices [J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9306-9310.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zhikuan, FENG Zhihua, CHEN Rong, YAN Zipeng, CUI Wei, LU Ke, LIAO Xiyi. Research Progress of High Density Interconnection Technology for SiC Power Devices[J]. Microelectronics, 2023, 53(3): 465

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 5, 2023

    Accepted: --

    Published Online: Jan. 3, 2024

    The Author Email:

    DOI:10.13911/j.cnki.1004-3365.230223

    Topics