Acta Optica Sinica, Volume. 42, Issue 17, 1714005(2022)

High Throughput Laser Nano Direct Writing Technique

Xu Liu1,2、* and Cuifang Kuang1,2
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, Zhejiang,China
  • 2Zhejiang Laboratory, Hangzhou 311121, Zhejiang, China
  • show less
    References(31)

    [1] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [2] Ingerly D B, Amin S, Aryasomayajula L et al. Foveros: 3D integration and the use of face-to-face chip stacking for logic devices[C](2019).

    [3] Kum H, Lee D, Kong W et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices[J]. Nature Electronics, 2, 439-450(2019).

    [4] Gale M T, Knop K. The fabrication of fine lens arrays by laser beam writing[J]. Proceedings of SPIE, 0398, 347-353(1983).

    [5] Wang S, Zhou Z, Li B et al. Progresses on new generation laser direct writing technique[J]. Materials Today Nano, 16, 100142(2021).

    [6] Venkatakrishnan K, Ngoi B K A, Stanley P et al. Laser writing techniques for photomask fabrication using a femtosecond laser[J]. Applied Physics A, 74, 493-496(2002).

    [7] Qin L, Huang Y Q, Xia F et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 20, 4916-4923(2020).

    [8] Cai J G, Lü C, Watanabe A. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices[J]. ACS Applied Materials & Interfaces, 10, 915-924(2018).

    [9] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [10] Wang M, Liu Q, Zhang H R et al. Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection[J]. ACS Applied Materials & Interfaces, 9, 29248-29254(2017).

    [11] Wanzenboeck H D, Waid S[M]. Focused ion beam lithography(2011).

    [12] Vieu C, Carcenac F, Pépin A et al. Electron beam lithography: resolution limits and applications[J]. Applied Surface Science, 164, 111-117(2000).

    [13] Zheludev N I. What diffraction limit?[J]. Nature Materials, 7, 420-422(2008).

    [14] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).

    [15] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [16] Li L J, Gattass R R, Gershgoren E et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009).

    [17] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 22, 3578-3582(2010).

    [18] Cao Y Y, Gan Z S, Jia B H et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 19, 19486-19494(2011).

    [19] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [20] Wollhofen R, Katzmann J, Hrelescu C et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 21, 10831-10840(2013).

    [21] Wollhofen R, Buchegger B, Eder C et al. Functional photoresists for sub-diffraction stimulated emission depletion lithography[J]. Optical Materials Express, 7, 2538-2559(2017).

    [22] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [23] Wu H K, Odom T W, Whitesides G M. Connectivity of features in microlens array reduction photolithography:   generation of various patterns with a single photomask[J]. Journal of the American Chemical Society, 124, 7288-7289(2002).

    [24] Jin J J, Pu M B, Wang Y Q et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2, 1600201(2017).

    [25] Tsai H Y, Thomas S W, Menon R. Parallel scanning-optical nanoscopy with optically confined probes[J]. Optics Express, 18, 16014-16024(2010).

    [26] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [27] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [28] Zhang R J[M]. Nanoscale integrated circuits-the manufacturing process(2014).

    [30] Sun M T, Li Y Z[M]. One-and two-photon absorptions: principles and applications(2018).

    [31] Hell S W. Far-field optical nanoscopy[J]. Science, 316, 1153-1158(2007).

    [32] Fischer J, Wegener M. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography[J]. Advanced Materials, 24, OP65-OP69(2012).

    Tools

    Get Citation

    Copy Citation Text

    Xu Liu, Cuifang Kuang. High Throughput Laser Nano Direct Writing Technique[J]. Acta Optica Sinica, 2022, 42(17): 1714005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 28, 2022

    Accepted: Aug. 13, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Liu Xu (liuxu@zju.edu.cn)

    DOI:10.3788/AOS202242.1714005

    Topics