Chinese Journal of Ship Research, Volume. 20, Issue 1, 25(2025)

Research progress on test scenario of ship autonomous navigation

Lijia CHEN1...2,3, Kai WANG1, Liwen HUANG1,2, Shengwei LI1,2, Xinwei ZHOU1 and Yanzhi LIU1 |Show fewer author(s)
Author Affiliations
  • 1School of Navigation, Wuhan University of Technology, Wuhan 430063, China
  • 2Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan 430063, China
  • 3State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
  • show less
    References(42)

    [4] [4] Bureau veritas guidelines f autonomous ships[EBOL]. (20190711) [20221103]. https:marineoffshe.bureauveritas.comnewsroombureauveritasguidelinesautonomousships.

    [5] [5] ClassNK. Rules & guidance[EBOL]. [20221103]. https:www.classnk.comaccountenRules_Guidance.

    [7] [7] SON N S, KIM S Y. On the sea trial test f the validation of an autonomous collision avoidance system of unmanned surface vehicle, ARAGON[C]OCEANS 2018 MTSIEEE leston. leston, SC, USA: IEEE, 2018: 1−5.

    [18] [18] MENZEL T, BAGSCHIK G, MAURER M. Scenarios f development, test validation of automated vehicles[C]2018 IEEE Intelligent Vehicles Symposium (Ⅳ). Changshu, China: IEEE, 2018: 18211827.

    [20] [20] YANG F, LIU J L, LI S J, et al. Virtualreal interaction tests f functional testing of smart ships[C]The 30th International Ocean Polar Engineering Conference. Shanghai: ISOPE, 2020.

    [26] [26] AMERSBACH C, WINNER H. Defining required feasible test coverage f scenariobased validation of highly automated vehicles[C]2019 IEEE Intelligent Transptation Systems Conference (ITSC). Auckl, New Zeal: IEEE, 2019: 425430.

    [35] [35] GAO Z, LIU Y, ZHENG J Y, et al. Predicting hazardous driving events using multimodal deep learning based on video motion profile kinematics data[C]2018 21st International Conference on Intelligent Transptation Systems (ITSC). Maui, HI, USA: IEEE, 2018: 33523357.

    [39] [39] LEE R, KOCHENDERFER M J, MENGSHOEL O J, et al. Adaptive stress testing of airbne collision avoidance systems[C]2015 IEEEAIAA 34th Digital Avionics Systems Conference (D). Prague, Czech Republic: IEEE, 2015: 124.

    [40] [40] KEN M, ALSAIF S, LEE R, et al. Adaptive stress testing f autonomous vehicles[C]2018 IEEE Intelligent Vehicles Symposium (Ⅳ). Changshu, China: IEEE, 2018: 17.

    [42] [42] WANG X Y, WANG Y H, MA I L, et al. Research on the processbased generation method of scenarios database f maritime autonomous surface ship test[C]ICETIS 2022; 7th International Conference on Electronic Technology Infmation Science. Harbin, China: VDE, 2022: 1−8.

    [48] [48] ZHAO D, GUO Y H, JIA Y J. Traffic: An open naturalistic driving scenario library[C]2017 IEEE 20th International Conference on Intelligent Transptation Systems (ITSC). Yokohama, Japan: IEEE, 2017: 1−8.

    [49] [49] PRES I, AZIMI S, LILIUS J. Scenariobased testing of a ship collision avoidance system[C]2020 46th Euromicro Conference on Software Engineering Advanced Applications (SEAA). Ptoz, Slovenia: IEEE, 2020: 545−552.

    [50] [50] RIES L, LANGNER J, OTTEN S, et al. A driving scenario representation f scalable realdata analytics with neural wks[C]2019 IEEE Intelligent Vehicles Symposium (Ⅳ). Paris, France: IEEE, 2019: 2215−2222.

    [51] [51] DU Z B, ZHANG L, ZHAO S, et al. Research on test evaluation method of L3 intelligent vehicle based on Chinese acteristics scene[C]2020 IEEE 4th Infmation Technology, wking, Electronic Automation Control Conference (ITNEC). Chongqing, China: IEEE, 2020: 26−32.

    [52] J YU, S K DUAN, X J YE. A white-box testing for deep neural networks based on neuron coverage. IEEE Transactions on Neural Networks and Learning Systems, 34, 9185-9197(2023).

    [56] D NALIC, H X LI, A EICHBERGER et al. Stress testing method for scenario-based testing of automated driving systems. IEEE Access, 8, 224974-224984(2020).

    [57] [57] DING W H, CHEN B M, XU M J, et al. Learning to collide: An adaptive safetycritical scenarios generating method[C]2020 IEEERSJ International Conference on Intelligent Robots Systems (IROS). Las Vegas, NV, USA: IEEE, 2020: 2243−2250.

    [58] [58] LAURENT T, ARCAINI P, ISHIKAWA F, et al. A mutationbased approach f assessing weight coverage of a path planner[C]2019 26th AsiaPacific Software Engineering Conference (APSEC). Putrajaya, Malaysia: IEEE, 2019: 94−101.

    [60] [60] MULLINS G E, STANKIEWICZ P G, GUPTA S K. Automated generation of diverse challenging scenarios f test evaluation of autonomous vehicles[C]2017 IEEE International Conference on Robotics Automation (ICRA). Singape: IEEE, 2017: 1443−1450.

    Tools

    Get Citation

    Copy Citation Text

    Lijia CHEN, Kai WANG, Liwen HUANG, Shengwei LI, Xinwei ZHOU, Yanzhi LIU. Research progress on test scenario of ship autonomous navigation[J]. Chinese Journal of Ship Research, 2025, 20(1): 25

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Frontier Review

    Received: Oct. 16, 2023

    Accepted: --

    Published Online: Mar. 13, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03597

    Topics