Optics and Precision Engineering, Volume. 30, Issue 1, 78(2022)
Optimal design of high frequency and high precision fast tool servo system
[1] S R PATTERSON, E B MAGRAB. Design and testing of a fast tool servo for diamond turning. Precision Engineering, 7, 123-128(1985).
[2] J H MOON, B G LEE. Modeling and sensitivity analysis of a pneumatic vibration isolation system with two air Chambers. Mechanism and Machine Theory, 45, 1828-1850(2010).
[3] [3] 3闫鹏, 李金银. 压电陶瓷驱动的长行程快刀伺服机构设计[J]. 光学 精密工程, 2020, 28(2): 390-397.YANP, LIJ Y. Design of piezo-actuated long-stroke fast tool servo mechanism[J]. Opt. Precision Eng., 2020, 28(2): 390-397. (in Chinese)
[4] J J WANG, H H DU, S M GAO et al. An ultrafast 2-D non-resonant cutting tool for texturing micro-structured surfaces. Journal of Manufacturing Processes, 48, 86-97(2019).
[5] [5] 5王贵林, 唐力, 左莉, 等. 快速刀具伺服系统加工误差的超前补偿修正[J]. 制造技术与机床, 2020(3): 50-53.WANGG L, TANGL, ZUOL, et al. Correction of machining error of fast tool servo system by using lead compensating method[J]. Manufacturing Technology & Machine Tool, 2020(3): 50-53. (in Chinese)
[6] [6] 6刘晓飞, 张堃, 杨绍奎, 等. 基于压电液压的快速刀具伺服系统研究[J]. 制造技术与机床, 2020(1): 83-87.LIUX F, ZHANGK, YANGSH K, et al. Research of fast tool servo system based on piezoelectric hydraulic[J]. Manufacturing Technology & Machine Tool, 2020(1): 83-87. (in Chinese)
[7] B SENCER, K ISHIZAKI, E SHAMOTO. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Annals, 64, 369-372(2015).
[8] Z W ZHU, Z TONG, S TO et al. Tuned diamond turning of micro-structured surfaces on brittle materials for the improvement of machining efficiency. CIRP Annals, 68, 559-562(2019).
[9] D P ZHAO, Z H ZHU, P HUANG et al. Development of a piezoelectrically actuated dual-stage fast tool servo. Mechanical Systems and Signal Processing, 144, 106873(2020).
[10] I HUSSAIN, W XIA, D ZHAO et al. Multi-physical design and resonant controller based trajectory tracking of the electromagnetically driven fast tool servo. Actuators, 1-11(2020).
[11] Z W ZHU, H H DU, R J ZHOU et al. Design and trajectory tracking of a nanometric ultra-fast tool servo. IEEE Transactions on Industrial Electronics, 67, 432-441(2020).
[12] Y D TAO, Z W ZHU, Q S XU et al. Tracking control of nanopositioning stages using parallel resonant controllers for high-speed nonraster sequential scanning. IEEE Transactions on Automation Science and Engineering, 18, 1218-1228(2021).
[13] R J ZHOU, Z H ZHU, L B KONG et al. Development of a high-performance force sensing fast tool servo. IEEE Transactions on Industrial Informatics, 1068, 1.
[14] Z W ZHU, X Q ZHOU, Z W LIU et al. Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining. Precision Engineering, 38, 809-820(2014).
[15] H H PHAM, I M CHEN. Stiffness modeling of flexure parallel mechanism. Precision Engineering, 29, 467-478(2005).
[16] [16] 16刘柯佳, 金栋平, 纪斌. 杠杆式柔性铰链微位移放大机构优化设计[C]. 中国力学大会-2015论文集, 2015: 256.LIUK J, JIND P, JIB. Optimal design of lever-type flexure hinge micro-displacement amplifying mechanism [C]. China Mechanics Congress-2015 proceedings, 2015: 256. (in Chinese)
[17] [17] 17江晓阳, 陈定方. 基于ANSYS的差动式位移放大机构性能分析[J]. 湖北工业大学学报, 2010, 25(4): 77-79. doi: 10.3969/j.issn.1003-4684.2010.04.027JIANGX Y, CHEND F. Analysis of characteristic of differential displacement amplifier based on ANSYS[J]. Journal of Hubei University of Technology, 2010, 25(4): 77-79. (in Chinese). doi: 10.3969/j.issn.1003-4684.2010.04.027
[18] Y M LI, Q S XU. Development and assessment of a novel decoupled XY parallel micropositioning platform. IEEE/ASME Transactions on Mechatronics, 15, 125-135(2010).
[19] [19] 19朱志伟. 散射抑制车削新方法及装置研究[D]. 长春: 吉林大学, 2013. doi: 10.25103/jestr.061.19ZHUZH W. A Novel Turning Method and Its Device Development for Suppressing Scattering Effects[D]. Changchun: Jilin University, 2013. (in Chinese). doi: 10.25103/jestr.061.19
[20] [20] 20秦宇, 冯之敬. 基于人工神经网络的柔性铰链结构动力修改[J]. 航空精密制造技术, 2006, 42(5): 25-27. doi: 10.3969/j.issn.1003-5451.2006.05.007QINY, FENGZH J. Structural dynamic modification of flexure hinge structure based on artificial neural network[J]. Aviation Precision Manufacturing Technology, 2006, 42(5): 25-27. (in Chinese). doi: 10.3969/j.issn.1003-5451.2006.05.007
[21] [21] 21杨海威, 詹永麒, 乔俊伟, 等. 基于结构的神经网络优化结构参数的应用[J]. 系统仿真学报, 2003, 15(8): 1116-1119. doi: 10.3969/j.issn.1004-731X.2003.08.017YANGH W, ZHANY Q, QIAOJ W, et al. Application in structural parameter optimization by using architecture-based neural network[J]. Acta Simulata Systematica Sinica, 2003, 15(8): 1116-1119. (in Chinese). doi: 10.3969/j.issn.1004-731X.2003.08.017
Get Citation
Copy Citation Text
Jianguo ZHANG, Jiang LI, Kai HUANG, Zhengding ZHENG, Hui YANG, Jianfeng XU. Optimal design of high frequency and high precision fast tool servo system[J]. Optics and Precision Engineering, 2022, 30(1): 78
Category: Micro/Nano Technology and Fine Mechanics
Received: May. 24, 2021
Accepted: --
Published Online: Jan. 20, 2022
The Author Email: XU Jianfeng (jfxu@hust.edu.cn)