Journal of Inorganic Materials, Volume. 37, Issue 4, 361(2022)

Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics

References(82)

[8] J LI, Y SONG, Y WANG et al. Ultrafine PdCu nanoclusters by ultrasonic-assisted reduction on the LDHs/rGO hybrid with significantly enhanced heck reactivity. ACS Applied Materials & Interfaces, 12, 50365-50376(2020).

[10] M LI, Q HUANG. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two- dimensional nanolaminates MXenes. Journal of Inorganic Materials, 35, 1-7(2020).

[15] H JIANG, Z WANG, L DONG et al. Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 353, 136607-1-9(2020).

[16] A LEVITT, J ZHANG, G DION et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Advanced Functional Materials, 30, 2000739-1-22(2020).

[20] J LIU, H B ZHANG, R SUN et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic- interference shielding. Advanced Materials, 29, 1702367-1-6(2017).

[21] Y LI, X TIAN, S P GAO et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Advanced Functional Materials, 30, 1907451-1-12(2019).

[23] H ZHANG, Z WANG, F WANG et al. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta, 224, 121879-1-7(2021).

[24] L LIU, Y YAO, K MA et al. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensors and Actuators B: Chemical, 331, 129470-1-9(2021).

[26] B K MA, M LI, L Z CHEONG et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 35, 131-138(2020).

[31] A GAZZI, L FUSCO, A KHAN et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Frontiers in Bioengineering and Biotechnology, 7, 295-1-15(2019).

[32] X HAN, J HUANG, H LIN et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7, 1701394-1-13(2018).

[34] B ANASORI, M R LUKATSKAYA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098-1-17(2017).

[35] M SOLEYMANIHA, M A SHAHBAZI, A R RAFIEERAD et al. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Advanced Healthcare Materials, 8, 1801137-1-26(2019).

[45] D XU, Z LI, L LI et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 30, 2000712-1-21(2020).

[47] Y ZHOU, W FENG, X QIAN et al. Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Applied Materials & Interfaces, 11, 19712-19723(2019).

[48] A SZUPLEWSKA, D KULPINSKA, A DYBKO et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 98, 874-886(2019).

[49] W FENG, R WANG, Y ZHOU et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 29, 1901942-1-15(2019).

[51] J SHAO, J ZHANG, C JIANG et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 400, 126009-1-12(2020).

[52] Q ZHANG, Q GUO, Q CHEN et al. Highly efficient 2D NIR-II photothermal agent with fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy. Advanced Science, 7, 1902576-1-10(2020).

[58] Z LI, H ZHANG, J HAN et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 30, 1706981-1-11(2018).

[60] H XIANG, H LIN, L YU et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano, 13, 2223-2235(2019).

[61] H YIN, X GUAN, H LIN et al. Nanomedicine-enabled photonic thermogaseous cancer therapy. Advanced Science, 7, 1901954-1-12(2020).

[65] R LIANG, Y LI, M HUO et al. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Applied Materials & Interfaces, 11, 42917-42931(2019).

[72] A SZUPLEWSKA, A WOJCIECHOWSKA, S POZNIAK et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. Journal of Nanobiotechnology, 17, 114-1-14(2019).

[73] A M JASTRZĘBSKA, A SZUPLEWSKA, A WOJCIECHOWSKA et al. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 7, 025018-1-12(2020).

[76] X LI, F LIU, D HUANG et al. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Advanced Functional Materials, 30, 2000308-1-10(2020).

[77] A M JASTRZĘBSKA, A SZUPLEWSKA, A WOJCIECHOWSKA et al. Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustainable Chemistry & Engineering, 8, 7942-7951(2020).

[78] Y LIU, Q HAN, W YANG et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 116, 111212-1-11(2020).

[79] N TAO, Y LIU, Y WU et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption. ACS Applied Biomaterials, 3, 4531-4542(2020).

[80] Y GUO, H WANG, X FENG et al. 3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic /chemo combination therapy. Nanotechnology, 32, 195701-1-11(2021).

[82] J YIN, S PAN, X GUO et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/ osteogenesis of bone defects. Nano-Micro Letters, 13, 30-1-18(2021).

Tools

Get Citation

Copy Citation Text

. Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics[J]. Journal of Inorganic Materials, 2022, 37(4): 361

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: REVIEW

Received: May. 10, 2020

Accepted: --

Published Online: Jan. 10, 2023

The Author Email:

DOI:10.15541/jim20210299

Topics