Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1028002(2025)

Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR

Dan Fan1, Zhengwei Yang1、*, Xia Li2, Chao Feng1, and Chuangjiang Rao2
Author Affiliations
  • 1Yunnan Water Resources and Hydropower Survey and Design Institute Co., Ltd., Kunming 650032, Yunnan , China
  • 2Yunnan Institute of Water & Hydropower Engineering Investigation, Design and Research, Kunming 650032, Yunnan , China
  • show less
    References(34)

    [1] Lin D, Qin Z Y, Yang J W et al. High resolution remotely sensed image classification method of multi-feature collaboration[J]. Journal of Geomatics Science and Technology, 31, 167-172(2014).

    [2] Zhao C. Research on 3D building model reconstruction from airborne LiDAR point cloud aided by aerial image[D], 15-16(2020).

    [3] Cao S, Pan S Y, Guan H Y. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 79-84(2019).

    [9] Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of Southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 37, 244-251(2021).

    [10] Shi F F, Lei C M, Xiao J S et al. Classification of crops in complicated topography area based on multisource remote sensing data[J]. Geography and Geo-Information Science, 34, 49-55, 2(2018).

    [11] Wang Y H, Fan W Y, Liu C Y. An object-based fusion of QUICKBIRD data and RADARSAT SAR data for classification analysis[J]. Journal of Northeast Forestry University, 44, 44-49(2016).

    [18] Li S H, Hua H Y, Zhang H. Classification based on hyperspectral image and LiDAR data with contrastive learning[J]. Laser & Optoelectronics Progress, 60, 2228006(2023).

    [23] Wang Y B, Dai S, Song D M et al. Autoencoder-based fusion classification of hyperspectral and LiDAR data[J]. Laser & Optoelectronics Progress, 61, 1228001(2024).

    [26] Zeng J Y, Deng S Y, Qin C B et al. Multi-level branch cross-scale fusion network for high-precision semantic segmentation in complex remote sensing environments[J]. Laser & Optoelectronics Progress, 62, 0428003(2025).

    [27] Du X X, Zare A. Technical report: scene label ground truth map for MUUFL gulfport data set[D](2017).

    Tools

    Get Citation

    Copy Citation Text

    Dan Fan, Zhengwei Yang, Xia Li, Chao Feng, Chuangjiang Rao. Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 28, 2024

    Accepted: Feb. 10, 2025

    Published Online: Apr. 23, 2025

    The Author Email: Zhengwei Yang (3274458043@qq.com)

    DOI:10.3788/LOP242189

    CSTR:32186.14.LOP242189

    Topics