Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1028002(2025)
Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR
Fig. 4. MUUFL dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
Fig. 5. Houston 2018 dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
Fig. 6. Trento dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
Fig. 7. Classification results of different models on the MUUFL dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
Fig. 8. Classification results of different models on the Houston 2018 dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
Fig. 9. Classification results of different models on the Trento dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
|
|
|
|
|
|
Get Citation
Copy Citation Text
Dan Fan, Zhengwei Yang, Xia Li, Chao Feng, Chuangjiang Rao. Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028002
Category: Remote Sensing and Sensors
Received: Oct. 28, 2024
Accepted: Feb. 10, 2025
Published Online: Apr. 23, 2025
The Author Email: Zhengwei Yang (3274458043@qq.com)
CSTR:32186.14.LOP242189