Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1028002(2025)

Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR

Dan Fan1, Zhengwei Yang1、*, Xia Li2, Chao Feng1, and Chuangjiang Rao2
Author Affiliations
  • 1Yunnan Water Resources and Hydropower Survey and Design Institute Co., Ltd., Kunming 650032, Yunnan , China
  • 2Yunnan Institute of Water & Hydropower Engineering Investigation, Design and Research, Kunming 650032, Yunnan , China
  • show less
    Figures & Tables(15)
    Network framework
    Structure of MCFF
    Structure of CGFI
    MUUFL dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Houston 2018 dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Trento dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Classification results of different models on the MUUFL dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Classification results of different models on the Houston 2018 dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Classification results of different models on the Trento dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    • Table 1. Classification evaluation metrics of different models on the MUUFL dataset

      View table

      Table 1. Classification evaluation metrics of different models on the MUUFL dataset

      ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
      trees92.7898.5091.4387.2593.6285.6990.2694.62
      mostly grass59.7478.6663.7685.3684.6481.5675.4688.54
      mixed ground surface94.1590.2981.6290.2187.1473.8778.8492.84
      dirt and sand93.1290.0593.2494.6792.7886.0386.8796.08
      road92.4696.8389.0684.5186.1386.3189.1392.33
      water98.0275.0992.6981.4883.5493.0798.4599.04
      building shadow95.2873.7884.3193.5989.9183.8288.1992.21
      building94.4296.8181.7290.2295.2883.7477.8292.47
      sidewalk86.5364.5181.5387.2385.3371.1374.3384.13
      yellow curb99.3719.7599.0393.2891.80100.0094.08100.00
      cloth panels96.8162.3698.6799.3698.2699.6397.6099.23
      OA90.5292.6286.1388.0390.8783.4485.5493.13
      AA91.1576.9787.0189.7489.8685.9086.4693.71
      Kappa84.7288.3982.1583.5986.0876.2478.3289.34
    • Table 2. Classification evaluation metrics of different models on the Houston 2018 dataset

      View table

      Table 2. Classification evaluation metrics of different models on the Houston 2018 dataset

      ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
      healthy grass93.4191.0594.7279.0277.9875.5485.6476.04
      stressed grass90.9691.1290.2093.6193.9592.7586.1296.75
      artificial turf99.1599.6899.2398.4999.5476.0299.3198.86
      evergreen trees94.5395.4193.3896.5493.8597.1396.8997.37
      deciduous trees95.4795.9785.9686.5988.2181.7685.8394.02
      bare earth99.5499.0899.2399.63100.0097.8889.5799.91
      water100.0099.1098.3567.0575.85100.0092.2898.95
      residential buildings83.8688.4485.8193.9694.8188.7988.7398.31
      non-residential buildings92.7793.0795.6498.7898.5598.6397.4598.21
      roads72.6085.2161.6178.7480.7983.0570.8786.23
      sidewalks63.3958.4861.4073.0477.3874.8473.2080.95
      crosswalks67.9265.8470.0831.8521.6827.9018.2859.71
      major thoroughfares70.1965.3669.3988.3086.8483.6582.9997.50
      highways91.8593.2685.1190.0289.3184.7482.2789.27
      railways96.4799.5896.48100.0099.1599.3199.0398.60
      paved parking lots93.1789.4588.3095.9694.9993.4688.5497.50
      unpaved parking lots98.8399.9199.0855.6346.5223.6064.0972.27
      cars94.5295.5393.5281.9585.2986.8385.8293.97
      trains96.5897.7696.4195.1595.1795.7495.1698.83
      stadium seats99.8098.0897.3698.9799.6398.6197.8099.48
      OA86.3487.1886.1492.2992.5391.6089.3495.73
      AA89.7590.0788.0685.1684.9783.0184.0091.64
      Kappa87.3189.6186.8990.4289.9087.9585.5792.68
    • Table 3. Classification evaluation metrics of different models on the Trento dataset

      View table

      Table 3. Classification evaluation metrics of different models on the Trento dataset

      ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
      apple trees99.2199.0596.4594.3099.6793.9194.8699.10
      buildings97.1297.7794.6393.3496.8394.8193.4496.77
      ground83.5482.8480.2979.5379.0182.4380.0388.27
      wood98.9999.2796.9395.7399.7497.3596.0599.80
      vineyard93.9693.0093.6193.8198.9299.0095.8699.77
      roads88.5288.6285.7187.8789.7576.4180.7490.65
      OA95.7495.5494.0593.5897.8194.7493.7098.26
      AA93.5693.4391.2790.7693.9990.6590.1695.73
      Kappa93.3593.2293.5492.4595.5792.2089.4697.41
    • Table 4. The computational cost of different models on various datasets

      View table

      Table 4. The computational cost of different models on various datasets

      DatasetComplexityTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
      HoustonTraining time727.39184.432198.58289.621329.44309.49399.011162.37
      Testing time15.241.379.021.415.151.762.014.45
      MUUFLTraining time338.3288.67972.82135.97773.52155.44175.74589.76
      Testing time7.040.763.970.703.604.946.312.94
      TrentoTraining time549.03117.291947.73217.76394.2276.295.81312.40
      Testing time17.211.658.701.0612.444.853.749.47
    • Table 5. Experimental results of ablation of model structure

      View table

      Table 5. Experimental results of ablation of model structure

      ModelMUUFLHonston 2018Trento
      MCFF_baseMCFFCGFIOAAAKappaOAAAKappaOAAAKappa
      ×××86.5187.2983.0188.6586.7387.5395.7491.1893.04
      ××90.4491.1886.8592.5788.0989.9796.9393.7195.20
      ××89.1590.6886.2191.8488.8190.1696.4294.8696.07
      ×90.5992.3687.7392.4089.9290.7097.3995.3596.92
      ×92.1393.7789.0494.7791.1491.6898.2695.7397.41
    • Table 6. Experimental results of ablation of loss function

      View table

      Table 6. Experimental results of ablation of loss function

      ModelMUUFLHonston 2018Trento
      LCELWCEOAAAKappaOAAAKappaOAAAKappa
      ×89.0490.1886.7491.5387.7388.2196.4494.0695.10
      ×92.1393.7789.0494.7791.1491.6898.2695.7397.41
    Tools

    Get Citation

    Copy Citation Text

    Dan Fan, Zhengwei Yang, Xia Li, Chao Feng, Chuangjiang Rao. Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 28, 2024

    Accepted: Feb. 10, 2025

    Published Online: Apr. 23, 2025

    The Author Email: Zhengwei Yang (3274458043@qq.com)

    DOI:10.3788/LOP242189

    CSTR:32186.14.LOP242189

    Topics