Journal of Inorganic Materials, Volume. 39, Issue 6, 591(2024)
[1] B W CHEN, D W NI, W C BAO et al. Engineering Cf/ZrB2- SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance. Adv. Sci., 10: 202304254(2023).
[2] J BINNER, M PORTER, B BAKER et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review. Int. Mater. Rev., 65, 389(2019).
[3] D W NI, Y CHENG, J P ZHANG et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram., 11, 1(2022).
[4] C OSES, C TOHER, S CURTAROLO. High-entropy ceramics. Nat. Rev. Mater., 5, 295(2020).
[6] Y ZENG, D N WANG, X XIONG et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 ℃. Nat. Commun., 8: 15836(2017).
[8] H M XIANG, Y XING, F Z DAI et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram., 10, 385(2021).
[9] A J WRIGHT, J LUO. A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. J. Mater. Sci., 55, 9812(2020).
[10] K KAUFMANN, D MARYANOVSKY, W M MELLOR et al. Discovery of high-entropy ceramics
[11] J GILD, Y ZHANG, T HARRINGTON et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep., 6: 37946(2016).
[12] R Z ZHANG, M J REECE. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A, 7, 22148(2019).
[14] L CHEN, K WANG, W T SU et al. Research progress of transition metal non-oxide high-entropy ceramics. J. Inorg. Mater., 35, 748(2019).
[15] Y C WANG. Processing and properties of high entropy carbides. Adv. Appl. Ceram., 121, 57(2022).
[16] F Y CAI, D W NI, B W CHEN et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites
[17] D YU, J YIN, B H ZHANG et al. Recent development of high- entropy transitional carbides: a review. J. Ceram. Soc. Jpn., 128, 329(2020).
[18] E CASTLE, T CSANADI, S GRASSO et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep., 8: 8609(2018).
[19] C PENG, X GAO, M Z WANG et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl. Phys. Lett., 114, 011905(2019).
[20] Y C WANG, T CSANADI, H F ZHANG et al. Enhanced hardness in high-entropy carbides through atomic randomness. Adv. Theory Simul., 3, 2000111(2020).
[21] J W YEH, S K CHEN, S J LIN et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6, 299(2004).
[22] B CANTOR, I T H CHANG, P KNIGHT et al. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A Struct. Mater., 375-377: 213(2004).
[23] C M ROST, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nat. Commun., 6: 8485(2015).
[24] Y J WANG, G J ZHANG. Non-order is the new order: high- entropy ceramics. J. Inorg. Mater., 36, 337(2021).
[25] W R ZHANG, P K LIAW, Y ZHANG. Science and technology in high-entropy alloys. Sci. China-Mater., 61, 2(2018).
[26] D B MIRACLE, O N SENKOV. A critical review of high entropy alloys and related concepts. Acta Mater., 122: 448(2017).
[27] T J HARRINGTON, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater., 166: 271(2019).
[28] J W YEH. Recent progress in high-entropy alloys. Ann. Chim-Sci. Mat., 31, 633(2006).
[29] M H TSAI, J W YEH. High-entropy alloys: a critical review. Mater. Res. Lett., 2, 107(2014).
[30] B L YE, T Q WEN, K H HUANG et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic. J. Am. Ceram. Soc., 102, 4344(2019).
[31] P SARKER, T HARRINGTON, C TOHER et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun., 9: 4980(2018).
[32] E CHICARDI, C GARCÍA-GARRIDO, J HERNÁNDEZ-SAZ et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceram. Int., 46, 21421(2020).
[33] E CHICARDI, C GARCíA-GARRIDO, F J GOTOR. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int., 45, 21858(2019).
[34] L FENG, W G FAHRENHOLTZ, G E HILMAS et al. Synthesis of single-phase high-entropy carbide powders. Scr. Mater., 162: 90(2019).
[36] S S NING, T Q WEN, B L YE et al. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J. Am. Ceram. Soc., 103, 2244(2019).
[37] F LI, Y LU, X G WANG et al. Liquid precursor-derived high- entropy carbide nanopowders. Ceram. Int., 45, 22437(2019).
[38] T ZHAO, W LIU, W J HAN et al. Synthesis of high entropy carbide nano powders
[39] J Y ZHOU, J Y ZHANG, F ZHANG et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int., 44, 22014(2018).
[40] A SEDEGOV, S VOROTILO, V TSYBULIN et al. Synthesis and study of high-entropy ceramics based on the carbides of refractory metals. IOP Conf. Ser. Mater. Sci. Eng., 558, 012043(2019).
[41] B DU, H H LIU, Y H CHU. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. J. Am. Ceram. Soc., 103, 4063(2020).
[42] P ŠOLCOVÁ, M NIŽŇANSKÝ, J SCHULZ et al. Preparation of high-entropy (Ti, Zr, Hf, Ta, Nb) carbide powder
[43] Y N SUN, F H CHEN, W F QIU et al. Synthesis of rare earth containing single-phase multicomponent metal carbides
[44] T CSANÁDI, M VOJTKO, Z DANKHÁZI et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. J. Eur. Ceram. Soc., 40, 4774(2020).
[45] H Z ZHANG, F AKHTAR. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy, 21, 474(2019).
[46] D DEMIRSKYI, T S SUZUKI, K YOSHIMI et al. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders. Open Ceram., 2: 100015(2020).
[47] F WANG, X L YAN, T Y WANG et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater., 195: 739(2020).
[48] F WANG, X ZHANG, X L YAN et al. The effect of submicron grain size on thermal stability and mechanical properties of high- entropy carbide ceramics. J. Am. Ceram. Soc., 103, 4463(2020).
[49] D Q LIU, A J ZHANG, J G JIA et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis. J. Eur. Ceram. Soc., 40, 2746(2020).
[50] K LU, J X LIU, X F WEI et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. J. Eur. Ceram. Soc., 40, 1839(2020).
[51] J DUSZA, T CSANáDI, D MEDVEĎ et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. J. Eur. Ceram. Soc., 41, 5417(2021).
[52] B L YE, T Q WEN, M C NGUYEN et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Mater., 170: 15(2019).
[54] L FENG, W T CHEN, W G FAHRENHOLTZ et al. Strength of single-phase high-entropy carbide ceramics up to 2300 ℃. J. Am. Ceram. Soc., 104, 419(2020).
[55] K WANG, L CHEN, C G XU et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J. Mater. Sci. Technol., 39: 99(2020).
[56] N NI, Q DING, Y C SHI et al. Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000 ℃. J. Eur. Ceram. Soc., 43, 2306(2023).
[57] W Y LU, L CHEN, W ZHANG et al. Single-phase formation and mechanical properties of (TiZrNbTaMo)C high-entropy ceramics: first-principles prediction and experimental study. J. Eur. Ceram. Soc., 42, 2021(2022).
[58] J PÖTSCHKE, M DAHAL, M HERRMANN et al. Preparation of high-entropy carbides by different sintering techniques. J. Mater. Sci., 56, 11237(2021).
[59] D YU, J YIN, B H ZHANG et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. J. Eur. Ceram. Soc., 41, 3823(2021).
[60] L CHEN, W ZHANG, Y Q TAN et al. Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering. J. Eur. Ceram. Soc., 41, 60(2021).
[61] M BRAIC, V BRAIC, M BALACEANU et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf. Coat. Technol., 204, 2010(2010).
[62] V BRAIC, A VLADESCU, M BALACEANU et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol., 211: 117(2012).
[63] V BRAIC, A C PARAU, I PANA et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings. Surf. Coat. Technol., 258: 996(2014).
[64] X L YAN, L CONSTANTIN, Y F LU et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc., 101, 4486(2018).
[65] J DUSZA, P ŠVEC, V GIRMAN et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J. Eur. Ceram. Soc., 38, 4303(2018).
[66] X F WEI, Y QIN, J X LIU et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J. Eur. Ceram. Soc., 40, 935(2020).
[67] X F WEI, J X LIU, F LI et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc., 39, 2989(2019).
[68] J GILD, K KAUFMANN, K VECCHIO et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scr. Mater., 170: 106(2019).
[69] W ZHANG, L CHEN, C G XU et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering. J. Mater. Sci. Technol., 72: 23(2021).
[70] D YU, B H ZHANG, J YIN et al. Densifying (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics by two-step pressureless sintering. J. Am. Ceram. Soc., 105, 76(2022).
[71] P MALINOVSKIS, S FRITZE, L RIEKEHR et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des., 149: 51(2018).
[72] A MUKHERJEE, A VLADESCU, I TITORENCU et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLOS ONE, 11, e0161151(2016).
[73] V BRAIC, M BALACEANU, M BRAIC et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater., 10: 197(2012).
[74] M BRAIC, M BALACEANU, A VLADESCU et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl. Surf. Sci., 284: 671(2013).
[75] S C LIANG, D C TSAI, Z C CHANG et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci., 258, 399(2011).
[76] Y T PEI, C Q CHEN, K P SHAHA et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering. Acta Mater., 56, 696(2008).
[77] C M ROST, T BORMAN, M D HOSSAIN et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater., 196: 231(2020).
[78] V F GORBAN’, A A ANDREYEV, G N KARTMAZOV et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. J. Phys. Chem., 39, 166(2017).
[79] W H KAO, Y L SU, J H HORNG et al. Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Mater. Chem. Phys., 268: 124741(2021).
[80] Y S JHONG, C W HUANG, S J LIN. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr) Cx coatings. Mater. Chem. Phys., 210: 348(2018).
[81] S Y LIN, S Y CHANG, Y C HUANG et al. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NC
[82] W J XU, B S JIA, X H LIU et al. Structural evolution and mechanical properties of multi-element (TiCrZrVNb)C high entropy ceramics films by multi-arc ion plating. Ceram. Int., 48, 19191(2022).
[83] J WANG, H ZHANG, X YU et al. Insight into the structure and tribological and corrosion performance of high entropy (CrNbSiTiZr) C films: first-principles and experimental study. Surf. Coat. Technol., 421: 127468(2021).
[84] J C LI, Y L ZHANG, Y X ZHAO et al. A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 ℃. Compos. B Eng..
[85] F Y CAI, D W NI, B W CHEN et al. Efficient fabrication and properties of 2D Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites
[86] L ZHANG, W Q WANG, N P ZHOU et al. Low temperature fabrication of Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic matrix composite by slurry coating and laminating combined with precursor infiltration and pyrolysis. J. Eur. Ceram. Soc., 42, 3099(2022).
[87] W J GUO, J HU, W FANG et al. A novel strategy for rapid fabrication of continuous carbon fiber reinforced (TiZrHfNbTa)C high-entropy ceramic composites: high-entropy alloy
[88] W C BAO, X G WANG, H J DING et al. High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures. Scr. Mater., 183: 33(2020).
[89] L CHEN, Y B LI, K CHEN et al. Synthesis and characterization of medium-/high-entropy M2SnC (M = Ti/V/Nb/Zr/Hf) MAX phases. Small Struct., 4: 2200161(2023).
[90] S K NEMANI, B ZHANG, B C WYATT et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano, 15, 12815(2021).
[91] L CHEN, Y B LI, K LIANG et al. Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Methods, 7, 2300054(2023).
[92] Z G DU, C WU, Y C CHEN et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater., 33, 2101473(2021).
[93] J B LIU, J XIONG, Z X GUO et al. Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering. Metall. Mater. Trans. A, 51, 6706(2020).
[94] Y C WANG, D YU, J YIN et al. Ablation behavior of (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide and (Hf-Ta-Zr-Nb-Ti)C-
[95] H X WANG, S Y WANG, Y J CAO et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 ℃. J. Mater. Sci. Technol.(2021).
[96] A NAUGHTON-DUSZOVÁ, P ŠVEC, A KOVALČÍKOVÁ et al. On the phase and grain boundaries in dual phase carbide/boride ceramics from micro to atomic level. J. Eur. Ceram. Soc., 43, 6765(2023).
[97] M D QIN, J GILD, C Z HU et al. Dual-phase high-entropy ultra- high temperature ceramics. J. Eur. Ceram. Soc., 40, 5037(2020).
[98] S J HUO, L CHEN, X R LIU et al. Reactive sintering of dual- phase high-entropy ceramics with superior mechanical properties. J. Mater. Sci. Technol., 129: 223(2022).
[99] M D QIN, H D VEGA, D W ZHANG et al. 21-Component compositionally complex ceramics: discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition. J. Adv. Ceram., 11, 641(2022).
[100] Y C WANG, X C WANG, S LI et al. Improved oxidation resistance of (Zr-Nb-Hf-Ta)(C, N) high entropy carbonitrides. Corros. Sci., 225: 111583(2023).
[101] O F DIPPO, N MESGARZADEH, T J HARRINGTON et al. Bulk high-entropy nitrides and carbonitrides. Sci. Rep., 10: 21288(2020).
[102] K BALASUBRAMANIAN, S V KHARE, D GALL. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater., 152: 175(2018).
[103] D O MOSKOVSKIKH, S VOROTILO, A S SEDEGOV et al. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceram. Int., 46, 19008(2020).
[105] D Q LIU, A J ZHANG, J G JIA et al. Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C. Mater. Sci. Eng. A Struct. Mater., 804: 140520(2021).
[106] H YU, M BAHADORI, G B THOMPSON et al. Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides. J. Mater. Sci., 52, 6235(2017).
[107] S KIANI, J M YANG, S KODAMBAKA et al. Nanomechanics of refractory transition-metal carbides: a path to discovering plasticity in hard ceramics. J. Am. Ceram. Soc., 98, 2313(2015).
[108] T CSANáDI, E CASTLE, M J REECE et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep., 9: 10200(2019).
[109] X X HAN, V GIRMAN, R SEDLAK et al. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc., 40, 2709(2020).
[110] Z L CHENG, W Y LU, L CHEN et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures. J. Eur. Ceram. Soc., 42, 5280(2022).
[111] F KÖRMANN, Y IKEDA, B GRABOWSKI et al. Phonon broadening in high entropy alloys. npj Comput. Mater., 3: 36(2017).
[112] Y W ZHANG, G M STOCKS, K JIN et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun., 6: 8736(2015).
[113] H CHEN, H M XIANG, F Z DAI et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol., 35, 1700(2019).
[114] C GASPARRINI, D S RANA, BRUN N LE et al. On the stoichiometry of zirconium carbide. Sci. Rep., 10: 6347(2020).
[115] X F WEI, J X LIU, W C BAO et al. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J. Eur. Ceram. Soc., 41, 4747(2021).
[116] J GILD, M SAMIEE, J L BRAUN et al. High-entropy fluorite oxides. J. Eur. Ceram. Soc., 38, 3578(2018).
[117] L BACKMAN, E J OPILA. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials. J. Eur. Ceram. Soc., 39, 1796(2019).
[118] L BACKMAN, J GILD, J LUO et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater., 197: 20(2020).
[119] L BACKMAN, J GILD, J LUO et al. Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics. Acta Mater., 197: 81(2020).
[120] B L YE, T Q WEN, D LIU et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corros. Sci.(2019).
[121] B L YE, T Q WEN, Y H CHU. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air.. J. Am. Ceram. Soc., 103, 500(2019).
[122] Y C WANG, R Z ZHANG, B H ZHANG et al. The role of multi- elements and interlayer on the oxidation behaviour of (Hf-Ta- Zr-Nb)C high entropy ceramics. Corros. Sci., 176: 109019(2020).
[123] H X WANG, X HAN, W LIU et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400-1600 °C. Ceram. Int., 47, 10848(2021).
[124] H X WANG, Y J CAO, W LIU et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-
[125] Y Q TAN, C CHEN, S G LI et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor. J. Alloys Compd., 816: 152523(2020).
[126] Y C WANG, M J REECE. Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders. Scr. Mater., 193: 86(2021).
[127] W M MELLOR, K KAUFMANN, O F DIPPO et al. Development of ultrahigh-entropy ceramics with tailored oxidation behavior. J. Eur. Ceram. Soc., 41, 5791(2021).
[128] Y C WANG, T CSANADI, H F ZHANG et al. Synthesis, microstructure, and mechanical properties of novel high entropy carbonitrides. Acta Mater., 231: 117887(2022).
[129] Z PENG, W SUN, X XIONG et al. Novel refractory high-entropy ceramics: transition metal carbonitrides with superior ablation resistance. Corros. Sci., 184: 109359(2021).
[130] Y C WANG, B H ZHANG, C Y ZHANG et al. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C. J. Mater. Sci. Technol..
[131] W J GUO, J HU, Y C YE et al. Ablation behavior of (TiZrHfNbTa)C high-entropy ceramics with the addition of SiC secondary under an oxyacetylene flame. Ceram. Int., 48, 12790(2022).
[132] Z M YE, Y ZENG, X XIONG et al. Elucidating the role of preferential oxidation during ablation: insights on the design and optimization of multicomponent ultra-high temperature ceramics. J. Adv. Ceram., 11, 1956(2022).
[133] Z Z CHEN, H X WANG, C R LI et al. Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350-2050 ℃. J. Eur. Ceram. Soc., 43, 2700(2023).
[134] S J MCCORMACK, K P TSENG, R J K WEBER et al. In-situ determination of the HfO2-Ta2O5-temperature phase diagram up to 3000 ℃. J. Am. Ceram. Soc., 102, 4848(2019).
[135] F WANG, D O NORTHWOOD. Oxides formed between ZrO2 and Nb2O5. J. Mater. Sci., 30: 4003(1995).
[136] F Y CAI, D W NI, W C BAO et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites. Compos. B Eng., 243: 110177(2022).
[137] J P COUTURES, J COUTURES. The system HfO2-TiO2. J. Am. Ceram. Soc., 70, 383(1987).
[138] A E MCHALE, R S ROTH. Investigation of the phase transition in ZrTiO4 and ZrTiO4-SnO2 solid solutions. J. Am. Ceram. Soc., 66, C-18(1983).
[139] M A KREBS, S R A CONDRATE. Vibrational spectra of HfO2-ZrO2 solid solutions. J. Am. Ceram. Soc., 65, c144(1982).
[141] H SCHADOW, H OPPERMANN, B WEHNER. Investigations on the quasi-binary system V2O5-Ta2O5. Cryst. Res. Technol., 27, 691(2006).
[142] A JONGEJAN, A WILKINS. A re-examination of the system Nb2O5-TiO2 at liquidus temperatures. J. Less-Common Met., 19, 185(1969).
[143] R S ROTH, L W COUGHANOUR. Phase equilibrium relations in the systems titania-niobia. J. Res. Natl. Bur. Stand, 55, 209(1955).
[144] J L WARING, R S ROTH. Effect of oxide additions on the polymorphism of tantalum pentoxide (system Ta2O5-TiO2). J. Res. Natl. Bur. Stand A Phys. Chem., 72, 175(1968).
[145] R ROTH, J WARING. Effect of oxide additions on the polymorphism of tantalum pentoxide III. Stabilization of the low temperature structure type. J. Res. Natl. Bur. Stand A Phys. Chem., 74, 485(1970).
[146] F HOLTZBERG, A REISMAN. Sub-solidus equilibria in the system Nb2O5-Ta2O5. J. Phys. Chem., 65, 1192(1961).
[147] L L Y CHANG, M G SCROGER, B PHILLIPS. Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3. J. Am. Ceram. Soc., 50, 211(1967).
[148] F WANG, X L YAN, L SHAO et al. Irradiation damage behavior in novel high-entropy carbide ceramics. Trans. Am. Nucl. Soc., 120: 327(2019).
[149] X T XIN, W C BAO, X G WANG et al. Reduced He ion irradiation damage in ZrC-based high-entropy ceramics. J. Adv. Ceram., 12, 916(2023).
[150] Y C ZHOU, B ZHAO, H CHEN et al. Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol., 74: 105(2021).
[151] W M ZHANG, H M XIANG, F Z DAI et al. Achieving ultra- broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). J. Adv. Ceram., 11, 545(2022).
[152] Y HU, D W NI, B W CHEN et al. Cf/(CrZrHfNbTa)C-SiC high- entropy ceramic matrix composites for potential multi-functional applications. J. Mater. Sci. Technol., 182: 132(2024).
Get Citation
Copy Citation Text
Feiyan CAI, Dewei NI, Shaoming DONG.
Category:
Received: Dec. 6, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Dewei NI (deweini@mail.sic.ac.cn), Shaoming DONG (smdong@mail.sic.ac.cn)