Journal of Inorganic Materials, Volume. 39, Issue 6, 591(2024)

Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics

Feiyan CAI1...2,3, Dewei NI1,2,4,*, and Shaoming DONG12,* |Show fewer author(s)
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 33. University of Chinese Academy of Sciences, Beijing 100049, China
  • 44. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    Figures & Tables(14)
    Morphologies of HECs powders synthesized by several typical methods
    SEM images and corresponding EDS element mappings of (TiZrNbTaW)C ceramics prepared by three typical processes[67]
    (a, b) SEM and (c-e) TEM images of nearly equimolar (TiNbTaCrW)C films deposited at 300 and 600 ℃[71]
    Hardness-depth curves of the (ZrHfNbTa)C and mono, binary carbides ceramics[18]
    Fracture toughness and Vickers hardness of HECs compared to related materials[19]
    Thermal conductivity of carbides with different numbers of metals at room temperature[15]
    Weight gain curves for (TiZrHfNbTa)C and ZrC at 1200 ℃ in water vapor condition[125]
    TG-DSC curves and SEM images after oxidation of (ZrHfNbTa)C, ZrC, NbC, HfC, TaC and (Hf-Ta)C powders[15]
    Elemental enrichment in the ablation transition region of (TiZrHfNbTa)C0.8N0.2[129]
    Schematic diagram of the ablation mechanism of (TiZrHfNbTa)C during oxyacetylene ablation flame (2000 ℃)[56]
    • Table 1. EFA values of 9 experimentally validated HECs[31]

      View table
      View in Article

      Table 1. EFA values of 9 experimentally validated HECs[31]

      CompositionEFA/(eV/atom)-1Phase
      (VNbTaMoW)C125Single-phase
      (TiZrHfNbTa)C100Single-phase
      (TiHfVNbTa)C100Single-phase
      (TiVNbTaW)C77Single-phase
      (TiHfNbTaW)C67Single-phase
      (TiZrHfTaW)C50Single-phase
      (ZrHfTaMoW)C45Multi-phase
      (TiZrHfMoW)C38Multi-phase
      (ZrHfVMoW)C37Multi-phase
    • Table 2. Typical HECs synthesis methods and characteristics

      View table
      View in Article

      Table 2. Typical HECs synthesis methods and characteristics

      Synthesizingmethod Composition (lattice parameter)Starting materialsSynthesizingconditions Grain sizeOxygen content/% (in mass)
      Mechanical alloying[32-33](TiZrHfVNb)C (0.4496 nm)(TiZrHfVTa)C (0.4495 nm)(TiZrHfNbTa)C (0.4526 nm)(TiZrVNbTa)C (0.4440 nm)(TiHfVNbTa)C (0.4425 nm)(ZrHfVNbTa)C (0.4493 nm)Transition metals + Graphite powder50-70 h2.5 nm2.4 nm3.3 nm4.0 nm3.2 nm3.0 nm-
      Carbothermal reduction method[34-35](TiZrHfNbTa)C (0.4524 nm)Metal oxides + Graphite powder or carbon blackCarbothermal reduction (CTR) 1600 ℃, 1 h;Solid solution (SS) 2000 ℃, 1.5 h550 nm0.2
      (TiZrHfNbTa)C (0.4503 nm)2200 ℃, 1 h0.5-2 μm-
      Molten salt synthesis[36](TiVNbTa)C (0.4468 nm)Metal carbides + Molten salt media KCl1300 ℃, 1 h50-110 nm-
      Liquid precursors method[37-38](TiZrHfNbTa)C (-)Metal chlorides + Furfuryl alcoholCTR 1400 ℃, 1 h; SS 2000 ℃, 1 h132 nm0.22
      (TiZrHfTa)C (0.4529 nm)Equiatomic metal containing monomers + Allyl-functional novolac resin1800 ℃, 2 h~100 nm-
      Direct synthetic method[39](TiZrHfNbTa)C (0.4508 nm)Metal carbides1950 ℃, 5 min (SPS)~2 μm-
    • Table 3. Common Preparation methods and properties of H ECs ceramics and coatings

      View table
      View in Article

      Table 3. Common Preparation methods and properties of H ECs ceramics and coatings

    • Table 4. Complex oxides that could form in the HECs systems based on a review of available phase diagrams

      View table
      View in Article

      Table 4. Complex oxides that could form in the HECs systems based on a review of available phase diagrams

      ElementTiZrHfNbTa
      TiTiO2HfTiO4[137]
      ZrZrTiO4[138]ZrO2(Hf, Zr)O2[139]
      HfHfO2
      VZrV2O7VNb9O25[140]VTa9O25[141]
      NbNb2TiO7[142]Nb10Ti2O29[142]Nb6Ti2O19[142]TiNb6O17[143]Zr6Nb2O17[135]Hf6Nb2O17[119]Nb2O5
      TaTiTa2O7[144]ZrTa6O17[145]Zr6Ta2O19[145]Hf6Ta2O17[134]Nb4Ta2O15[146]Ta2O5
      Mo
      WZrW2O8[147]HfW2O8[147]
    Tools

    Get Citation

    Copy Citation Text

    Feiyan CAI, Dewei NI, Shaoming DONG. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 591

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 6, 2023

    Accepted: --

    Published Online: Jul. 31, 2024

    The Author Email: NI Dewei (deweini@mail.sic.ac.cn), DONG Shaoming (smdong@mail.sic.ac.cn)

    DOI:10.15541/jim20230562

    Topics