Laser & Optoelectronics Progress, Volume. 58, Issue 18, 1811009(2021)

Progress in Computational Fourier Microscopy

Jingang Zhong1、*, Manhong Yao2, and Junzheng Peng1
Author Affiliations
  • 1Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
  • 2School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China
  • show less
    References(39)

    [1] Kurvits J A, Jiang M, Zia R. Comparative analysis of imaging configurations and objectives for Fourier microscopy[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 32, 2082-2092(2015).

    [2] Dominguez D, Alharbi N, Alhusain M et al. Fourier plane imaging microscopy[J]. Journal of Applied Physics, 116, 103102(2014).

    [3] Mattheyses A L, Axelrod D. Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging[J]. Journal of Biomedical Optics, 10, 054007(2005).

    [4] Wagner R, Cichos F. Fast measurement of photonic stop bands by back focal plane imaging[J]. Physical Review. B, Condensed Matter, 87, 165438(2013).

    [5] Giavazzi F, Cerbino R. Digital Fourier microscopy for soft matter dynamics[J]. Journal of Optics, 16, 083001(2014).

    [6] Shi R, Janunts N, Hellmann C et al. Vectorial physical-optics modeling of Fourier microscopy systems in nanooptics[J]. Journal of the Optical Society of America A, 37, 1193-1205(2020).

    [7] Lieb M A, Zavislan J M, Novotny L. Single-molecule orientations determined by direct emission pattern imaging[J]. Journal of the Optical Society of America B, 21, 1210-1215(2004).

    [8] Budde H, Coca-López N, Shi X et al. Raman radiation patterns of graphene[J]. ACS Nano, 10, 1756-1763(2016).

    [9] Sersic I, Tuambilangana C, Koenderink A F. Fourier microscopy of single plasmonic scatterers[J]. New Journal of Physics, 13, 083019(2011).

    [10] Shegai T, Miljković V D, Bao K et al. Unidirectional broadband light emission from supported plasmonic nanowires[J]. Nano Letters, 11, 706-711(2011).

    [11] Curto A G, Taminiau T H, Volpe G et al. Multipolar radiation of quantum emitters with nanowire optical antennas[J]. Nature Communications, 4, 1750(2013).

    [12] Tripathi R P N, Vasista A B, Chikkaraddy R et al. Radiative channeling of nanowire Frenkel exciton polaritons through surface plasmons[J]. Advanced Optical Materials, 5, 1600873(2017).

    [13] Sharma D K, Chaubey S K, Vasista A B et al. Directional second-harmonic generation controlled by sub-wavelength facets of an organic mesowire[J]. Applied Optics, 57, 5914-5922(2018).

    [14] Wolf D, Schumacher T, Lippitz M. Shaping the nonlinear near field[J]. Nature Communications, 7, 1-6(2016).

    [15] Kim J, Zhao H N, Hou S C et al. Using Fourier-plane imaging microscopy for determining transition-dipole-moment orientations in organic light-emitting devices[J]. Physical Review Applied, 14, 034048(2020).

    [16] Mait J N, Euliss G W, Athale R A. Computational imaging[J]. Advances in Optics and Photonics, 10, 409-483(2018).

    [17] Lukac R. Computational photography: methods and applications[M](2011).

    [18] Dai Q H, Wu J M, Fan J T et al. Recent advances in computational photography[J]. Chinese Journal of Electronics, 28, 1-5(2019).

    [19] Fang L, Dai Q H. Computational light field imaging[J]. Acta Optica Sinica, 40, 0111001(2020).

    [20] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [21] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [22] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [23] Shao X P, Su Y, Liu J P et al. Connotation and system of computational imaging[J]. Acta Photonica Sinica, 50, 0511001(2021).

    [24] Zhao T Y, Wang Z J, Feng K et al. High-speed structured illumination microscopy and its applications[J]. Laser & Optoelectronics Progress, 57, 240001(2020).

    [25] Chen Y C, Li C K, Hao X et al. Progress of point scanning super-resolution microscopy based on frequency shifting[J]. Laser & Optoelectronics Progress, 57, 180001(2020).

    [26] Yang J Y, Dong H, Xing F L et al. Single-molecule localization super-resolution microscopy and its applications[J]. Laser & Optoelectronics Progress, 58, 1200001(2021).

    [27] Peng J Z, Yao M H, Huang Z B et al. Fourier microscopy based on single-pixel imaging for multi-mode dynamic observations of samples[J]. APL Photonics, 6, 046102(2021).

    [28] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [29] Zhang Z B, Wang X Y, Zheng G A et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).

    [30] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [31] Lu T A, Qiu Z H, Zhang Z B et al. Comprehensive comparison of single-pixel imaging methods[J]. Optics and Lasers in Engineering, 134, 106301(2020).

    [32] Zhang Z B, Lu T A, Peng J Z et al. Fourier single-pixel imaging techniques and applications[J]. Infrared and Laser Engineering, 48, 0603002(2019).

    [33] Levoy M, Ng R, Adams A et al. Light field microscopy[J]. ACM Transactions on Graphic, 25, 924-934(2006).

    [34] Yao M H, Cheng J J, Huang Z B et al. Reflection light-field microscope with a digitally tunable aperture by single-pixel imaging[J]. Optics Express, 27, 33040-33050(2019).

    [35] Yao M H, Cai Z X, Qiu X et al. Full-color light-field microscopy via single-pixel imaging[J]. Optics Express, 28, 6521-6536(2020).

    [36] Zhang Z B, Liu S J, Peng J Z et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).

    [37] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018).

    [38] Zhang Y W, Zhao M X, Wang J J et al. Momentum-space imaging spectroscopy for the study of nanophotonic materials[J]. Science Bulletin, 66, 824-838(2021).

    [39] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    Tools

    Get Citation

    Copy Citation Text

    Jingang Zhong, Manhong Yao, Junzheng Peng. Progress in Computational Fourier Microscopy[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jun. 23, 2021

    Accepted: Aug. 11, 2021

    Published Online: Sep. 3, 2021

    The Author Email: Zhong Jingang (tzjg@jnu.edu.cn)

    DOI:10.3788/LOP202158.1811009

    Topics