Optics and Precision Engineering, Volume. 30, Issue 10, 1181(2022)
Grating X-ray collimator supported by Si3N4 membrane with large aspect ratio written directly by electron beam
[1] K MADI, K A STAINES, B K BAY et al.
[2] K TAMASAKU, E SHIGEMASA, Y INUBUSHI et al. X-ray two-photon absorption competing against single and sequential multiphoton processes. Nature Photonics, 8, 313-316(2014).
[3] A TAKEUCHI, K UESUGI, Y SUZUKI. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics. Journal of Synchrotron Radiation, 20, 793-800(2013).
[4] [4] 4王琦, 高党忠, 马小军, 等. 惯性约束聚变靶丸高精度X射线数字成像[J]. 光学 精密工程, 2020, 28(2): 324-333.WANGQ, GAOD Z, MAX J, et al. High precision X-ray digital imaging of inertial confinement fusion capsules[J]. Optics and Precision Engineering, 2020, 28(2): 324-333.(in Chinese)
[5] [5] 5谢红兰, 邓彪, 杜国浩, 等. 上海光源X射线成像及其在材料科学上的应用研究进展[J]. 失效分析与预防, 2021, 16(1): 46-59, 69. doi: 10.3969/j.issn.1673-6214.2021.01.005XIEH L, DENGB, DUG H, et al. Development of X-ray imaging methodology and its applications on material science at Shanghai synchrotron radiation facility[J]. Failure Analysis and Prevention, 2021, 16(1): 46-59, 69.(in Chinese). doi: 10.3969/j.issn.1673-6214.2021.01.005
[6] G HARDING. X-ray diffraction imaging—A multi-generational perspective. Applied Radiation and Isotopes, 67, 287-295(2009).
[7] J S HIRAGA, S NAKAMURA, Y UCHIDA et al. A novel multi-collimator using BP-1 glass and an application for X-ray CCDs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573, 236-239(2007).
[8] Z R HAO, G T FAN, H W WANG et al. Collimator system of SLEGS beamline at Shanghai light source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1013, 165638(2021).
[9] M W MARASHDEH. Effect of the LEGe detector collimators on K-series peaks and Compton scattering in XRF analysis using gamma rays. Heliyon, 4(2018).
[10] M HOSSEIN, S M REZA, S N JAMSHID. Image quality and dose assessment of collimator slit width effect in SLOT-SCAN X-ray imaging system. Applied Radiation and Isotopes, 171, 109642(2021).
[11] A Y NIKULIN, J R DAVIS. Refraction phenomena in X-ray scattering experiments performed with a narrow collimator aperture. Optics Communications, 155, 231-235(1998).
[12] K TSUJI, A MATSUDA, K NAKANO et al. X-ray fluorescence analysis of soft materials using needle-type collimators enabling greater tolerance in analysis depth. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 460-464(2006).
[13] A T SIDAMBE, D S JUDSON, S J COLOSIMO et al. Laser Powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. International Journal of Refractory Metals and Hard Materials, 84, 104998(2019).
[14] A LIEBER, R BENJAMIN, P LYONS et al. Micro-channel plate as a parallel-bore collimator for soft X-ray imaging. Nuclear Instruments and Methods, 125, 553-556(1975).
[15] [15] 15郑春晓, 蔡明生, 胡一鸣, 等. 硬X射线成像望远镜系统初步研究[J]. 天文学报, 2014, 55(2): 154-169. doi: 10.3969/j.issn.0001-5245.2014.02.006ZHENGC X, CAIM S, HUY M, et al. A preliminary research on the development of the hard X-ray imaging telescope[J]. Acta Astronomica Sinica, 2014, 55(2): 154-169.(in Chinese). doi: 10.3969/j.issn.0001-5245.2014.02.006
[16] F Z LI, Z G LIU, T X SUN. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics. The Review of Scientific Instruments, 87(2016).
[17] D HAMPAI, V GUGLIELMOTTI, A MARCELLI et al. Shaped X-ray beams by channeling in polycapillary optics. Radiation Physics and Chemistry, 174, 108965(2020).
[18] J C KHONG, R SPELLER, S DORKINGS et al. Rapid prototyping of cost efficient X-ray collimators. Manufacturing Letters, 20, 49-53(2019).
[19] S B DABAGOV, H UBERALL. On X-ray channeling in narrow guides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 266, 3881-3887(2008).
[20] [20] 20王建英, 邹晶, 陈津平, 等. 基于毛细管的X射线显微成像系统可行性[J]. 纳米技术与精密工程, 2017, 15(6): 507-512. doi: 10.13494/j.npe.20160112WANGJ Y, ZOUJ, CHENJ P, et al. Feasibility of X-ray microscope imaging system based on polycapillary[J]. Nanotechnology and Precision Engineering, 2017, 15(6): 507-512.(in Chinese). doi: 10.13494/j.npe.20160112
[21] [21] 21周洪军, 钟鹏飞, 郑津津, 等. 不同厚度Al滤片对17~33nm高次谐波抑制的定量研究[J]. 光学 精密工程, 2007, 15(7): 1016-1020. doi: 10.3321/j.issn:1004-924X.2007.07.004ZHOUH J, ZHONGP F, ZHENGJ J, et al. Quantitative research on higher order harmonic suppression in 1733 nm with different thickness Al filters[J]. Optics and Precision Engineering, 2007, 15(7): 1016-1020.(in Chinese). doi: 10.3321/j.issn:1004-924X.2007.07.004
[22] [22] 22陈田祥, 高娜, 李琳, 等. 空间X射线探测用遮光膜的光学性能表征[J]. 光学 精密工程, 2019, 27(11): 2337-2342. doi: 10.3788/ope.20192711.2337CHENT X, GAON, LIL, et al. Optical property characterization of optical blocking filters used in space X-ray survey[J]. Optics and Precision Engineering, 2019, 27(11): 2337-2342.(in Chinese). doi: 10.3788/ope.20192711.2337
[23] P PREM, S VEERLA, R A V NARASIMHA et al. High speed silicon wet anisotropic etching for applications in bulk micromachining: a review. Micro and Nano Systems Letters, 9, 1-59(2021).
[24] Y J LI, Y F CHEN, H C WANG et al. A novel and reliable approach for controlling silicon membrane thickness with smooth surface. Microelectronic Engineering, 251, 111640(2022).
[25] E A DOBISZ. Reduction and elimination of proximity effects. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 11, 2733(1993).
Get Citation
Copy Citation Text
Yijie LI, Jun XIAO, Yifang CHEN, Xujie TONG, Chengyang MU. Grating X-ray collimator supported by Si3N4 membrane with large aspect ratio written directly by electron beam[J]. Optics and Precision Engineering, 2022, 30(10): 1181
Category: Micro/Nano Technology and Fine Mechanics
Received: Oct. 16, 2021
Accepted: --
Published Online: Jun. 1, 2022
The Author Email: CHEN Yifang (yifangchen@fudan.edu.cn)