Journal of Inorganic Materials, Volume. 34, Issue 3, 269(2019)
Thermoelectric Device: Contact Interface and Interface Materials
[3] HU J Z, LIU W S, ZHANG S M et al. New trends, strategies and opportunities in thermoelectric materials: a perspective[D]. Mater. Today Phys., 1, 50-60(2017).
[4] FU C G, LIU Y T, ZHU T J et al. Compromise and synergy in high efficiency thermoelectric materials[D]. Adv. Mater, 29, 1605884(2017).
[5] LI J F, LIU W S, ZHAO L D et al. High-performance nanostructured thermoelectric materials[D]. NPGAsia Mater., 2, 152-158(2010).
[6] DRESSELHAUS M S, ESFARJANI K, ZEBARJADI M et al. Perspectives on thermoelectrics: from fundamentals to device applications[D]. Energy Environ. Sci., 5, 5147-5162(2012).
[7] BAI S Q, CHEN L D, XIONG Z. Recent progress of thermoelectric nano-composites[D]. Journal ofInorganic Materials, 25, 561-568(2010).
[8] LAN J Z, LIU Y C, ZHAN B et al. Research progress of oxides thermoelectric materials[D]. Journal ofInorganic Materials, 29, 237-244(2014).
[9] CHEN G, LIU T X, TANG X F et al. Optimization of electrode material and connecting process for Mg-Si-Sn based thermoelectric device[D]. Journal ofInorganic Materials, 30, 639-646(2015).
[10] BAI S, FU C, LIU Y et al. Realizing high figure of merit in heavy band p-type half-Heusler thermoelectric materials[D]. Nat. Comm., 6, 8144-8151(2015).
[11] HU X, JOOD P, OHTA M et al. Power genaration of nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[D]. Energy Environ. Sci., 9, 517-529(2016).
[12] JIE Q, KRAEMER D, MCENANEY K et al. Concentrating solar thermoelectric generator with a peak efficiency of 7.4%[D]. Nature Energy, 1, 1-8(2016).
[13] LIAO J, TANG Y, ZHANG Q et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[D]. Energy Environ. Sci., 10, 956-963(2017).
[14] HAO F, QIU P, TANG Y et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃[D]. Energy Environ. Sci., 9, 3120-3127(2016).
[17] HATZIKRANIOTIS E, SAMARAS I, ZORBAS K T et al. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling[D]. J. Electron. Mater., 39, 2112-2116(2010).
[18] BARAKO M T, MARCONNET A M, PARK W.
[19] CLIN TH, TURENNE S, VASILEVSKIY Det al.Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module[D]. J. Electro. Mater., 38, 994-1001(2009).
[20] KIM H S, LIU W S, WANG T et al. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators[D]. Adv. Funct. Mater., 26, 3678-3686(2016).
[21] LIU W S, WANG H, WANG L et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[D]. J. Mater. Chem. A, 1, 13093-13100(2013).
[22] CHEN G, LAN Y C, n-type Bi2, tin in p-type, WANG D Z[D], 92, 1-3(2008).
[23] ROWE D M.[M]. CRC Handbook of Thermoelectrics., 479-485(1995).
[24] KIM H S, LIU W S, QING J et al. Current progress and future challenges in thermoelectric power generation: from materials to devices[D]. Acta Materialia, 87, 357-376(2015).
[25] HABA V. Method and Materials For Obtaining Low Resistance Bond to Bismuth Telluride[D]. US Patent, 3017693, 3079455, 1963(1962).
[26] BERNOFF R A, ROSI F D[D]. Method and Materials for Obtaining Low Resistance Bonds to Thermoelectric Bodies. US Patent, 3037064, 1962.
[27] CHEN W J, LEE C H, LIAO C N. Effect of interfacial compound formation on contact resistivity of soldered junction between bismuth telluride based thermoelements and copper[D]. Electrochem. Solid-State Lett., 10, 23-25(2007).
[28] MENGALI O J, SEILER M R. Contact resistance studies on thermoelectric materials[D]. Adv. Energy Conversion, 2, 59-68(1962).
[29] WEITZMAN L H[D]. Etching Bismuth Telluride.US Patent, 3338765, 1967.
[30] MADDUX J R, MEISSNER G, TALOR P Jet al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett.[D], 103, 1-4(2013).
[31] LEE C C, LIN W P, WESOLOWSKI D E. Barrier/bonding layers on bismuth telluride for high temperature thermoelectric modules[D]. J. Mater. Sci.: Mater. Electron., 22, 1313-1320(2011).
[32] IYORE O D[D]. Interface Characterization of Contacts to Bulk Bismuth Telluride Alloys. Richardson, TX: University of Texas at Dallas, Master’s Thesis, UMI No, 1470835, 2009.
[33] CHEN S, FENG H P, YU B[D]. et al. Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods. Electrochimica Acta, 56, 3079-3084(2011).
[34] GUPTA R P, IYORE O D, LEE T H et al. Interface characterization of nickel contact to bulk bismuth telluride selenide[D]. Surf. Interface Analysis, 41, 440-444(2009).
[35] MLAVSKY A I, WEINSTEIN M. Bonding of lead telluride to pure iron electrodes[D]. Rev. Sci. Instrum., 33, 1119-1120(1962).
[36] BHATTACHARYA S, SINGH A, THINAHARAN C et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85)[D]. J. Phys. D: Appl. Phys., 42, 1-6(2008).
[37] LEAVITT F A, MARUDHACHALAM P, MCCOY J W et al. Segmented Thermoelectric Module with Bonded Legs. US Patent. Segmented Thermoelectric Module with Bonded Legs[D]. US Patent, A1, 2012(2012).
[38] CHEN C L, DRYMIOTIS F, XIA H et al. Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications[D]. J. Mater. Sci., 50, 2700-2708(2015).
[39] CHEN C L, DRYMIOTIS F, XIA H et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications[D]. J. Mater. Sci., 49, 1716-1723(2014).
[40] CHEN C L, DRYMIOTIS F, XIA H et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication[D]. J. Electro. Mater., 43, 4064-4069(2014).
[41] CHEN L, NODA Y, ORIHASHI M et al. Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering[D], 543-546(1998).
[42] FERRERES X R, NANCARROW M, YAMINI S A et al. One-step bonding of Ni electrode to n-type PbTe — a step towards fabrication of thermoelectric generators[D]. Materials and Design, 107, 90-97(2016).
[43] DRYMIOTIS F, LI C C, LIAO L L et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials[D]. J. Mater. Chem. C, 3, 10590-10596(2015).
[44] GARCIA-CANADAS J, KALTZOGLOU A, POWELL A V et al. Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications[D]. J. Electro. Mater., 42, 1369-1374(2013).
[45] FAN X C, GU M, SHI X et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints[D]. Ceramics International, 41, 7590-7595(2015).
[46] CHO J Y, SALVADOR J R, YE Z et al. Conversion efficiency of skutterudite-based thermoelectric modules[D]. Phys. Chem. Chem. Phys., 16, 12510-12520(2014).
[47] BAI S Q, CHEN L D, FAN J F et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer[D]. Materials Letters, 58, 3876-3878(2004).
[48] GENG H R, TENG X Y, ZHAO D G. Fabrication and reliabilityevaluation of CoSb3/W-Cu thermoelectric element[D]. J. Alloys Compd., 517, 198-203(2012).
[49] JIANG W, LI X Y, ZHAO D G et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation[D]. Journal of Inorganic Materials, 24, 545-548(2009).
[50] GU M, LI X Y, XIA X G et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature[D]. J. Alloys Compd., 610, 665-670(2014).
[51] BAI S Q, REN D D, TANG Y S et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder[D]. Journal of Inorganic Materials, 30, 256-260(2015).
[52] BAI S Q, GU M, HUANG X Y, XIA X G et al. Study on the interfacial stability of p-type Ti/Ce
[53] CAILLAT T, FLEURIAL J P, SNYDER G J et al. Development of High Efficiency Segmented Thermoelectric Unicouples[C]. Proceedings of 20th Int. Conf. on Thermoelectrics, Beijing, 504, 282-285(2001).
[54] CAILLAT T, CHI S C, FLEURIAL J P[D]. Electrical Contacts for Skutterudite Thermoelectric Materials.US Patent, 20120006376, A1, 2012.
[55] GENG H Y, GUO J Q, OCHI T et al. Development of skutterudite thermoelectric materials and modules[D]. J. Electro. Mater., 41, 1036-1042(2012).
[56] MUTO A, POUDEL B, YANG J et al. Skutterudite unicouple characterization for energy harvesting applications[D]. Adv. Energy Mater., 3, 245-251(2013).
Get Citation
Copy Citation Text
Xiao-Kai HU, Shuang-Meng ZHANG, Fu ZHAO, Yong LIU, Wei-Shu LIU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Device: Contact Interface and Interface Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269
Category: Research Articles
Received: Jun. 21, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: