Journal of Inorganic Materials, Volume. 34, Issue 3, 269(2019)
Thermoelectric Device: Contact Interface and Interface Materials
[3] Z HU J, S LIU W, M ZHANG S et al. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys., 1, 50-60(2017).
[4] G FU C, T LIU Y, J ZHU T et al. Compromise and synergy in high efficiency thermoelectric materials. Adv. Mater, 29, 1605884(2017).
[5] F LI J, S LIU W, D ZHAO L et al. High-performance nanostructured thermoelectric materials. NPGAsia Mater., 2, 152-158(2010).
[6] S DRESSELHAUS M, K ESFARJANI, M ZEBARJADI et al. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 5, 5147-5162(2012).
[7] Q BAI S, D CHEN L, Z XIONG. Recent progress of thermoelectric nano-composites. Journal ofInorganic Materials, 25, 561-568(2010).
[8] Z LAN J, C LIU Y, B ZHAN et al. Research progress of oxides thermoelectric materials. Journal ofInorganic Materials, 29, 237-244(2014).
[9] G CHEN, X LIU T, F TANG X et al. Optimization of electrode material and connecting process for Mg-Si-Sn based thermoelectric device. Journal ofInorganic Materials, 30, 639-646(2015).
[10] S BAI, C FU, Y LIU et al. Realizing high figure of merit in heavy band p-type half-Heusler thermoelectric materials. Nat. Comm., 6, 8144-8151(2015).
[11] X HU, P JOOD, M OHTA et al. Power genaration of nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci., 9, 517-529(2016).
[12] Q JIE, D KRAEMER, K MCENANEY et al. Concentrating solar thermoelectric generator with a peak efficiency of 7.4%. Nature Energy, 1, 1-8(2016).
[13] J LIAO, Y TANG, Q ZHANG et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci., 10, 956-963(2017).
[14] F HAO, P QIU, Y TANG et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃. Energy Environ. Sci., 9, 3120-3127(2016).
[17] E HATZIKRANIOTIS, I SAMARAS, T ZORBAS K et al. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J. Electron. Mater., 39, 2112-2116(2010).
[18] T BARAKO M, M MARCONNET A, W PARK.
[19] TH CLIN, S TURENNE, D VASILEVSKIYet al.Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J. Electro. Mater., 38, 994-1001(2009).
[20] S KIM H, S LIU W, T WANG et al. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Adv. Funct. Mater., 26, 3678-3686(2016).
[21] S LIU W, H WANG, L WANG et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A, 1, 13093-13100(2013).
[22] G CHEN, C LAN Y, Bi2 n-type, p-type tin in, Z WANG D, 92, 1-3(2008).
[23] M. ROWE D. CRC Handbook of Thermoelectrics., 479-485(1995).
[24] S KIM H, S LIU W, J QING et al. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia, 87, 357-376(2015).
[25] V HABA. Method and Materials For Obtaining Low Resistance Bond to Bismuth Telluride. US Patent, 3017693, 3079455, 1963(1962).
[26] A BERNOFF R, D ROSI F. Method and Materials for Obtaining Low Resistance Bonds to Thermoelectric Bodies. US Patent, 3037064, 1962.
[27] J CHEN W, H LEE C, N LIAO C. Effect of interfacial compound formation on contact resistivity of soldered junction between bismuth telluride based thermoelements and copper. Electrochem. Solid-State Lett., 10, 23-25(2007).
[28] J MENGALI O, R SEILER M. Contact resistance studies on thermoelectric materials. Adv. Energy Conversion, 2, 59-68(1962).
[29] L H WEITZMAN. Etching Bismuth Telluride.US Patent, 3338765, 1967.
[30] R MADDUX J, G MEISSNER, J TALOR Pet al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett., 103, 1-4(2013).
[31] C LEE C, P LIN W, E WESOLOWSKI D. Barrier/bonding layers on bismuth telluride for high temperature thermoelectric modules. J. Mater. Sci.: Mater. Electron., 22, 1313-1320(2011).
[32] D IYORE O. Interface Characterization of Contacts to Bulk Bismuth Telluride Alloys. Richardson, TX: University of Texas at Dallas, Master’s Thesis, UMI No, 1470835, 2009.
[33] S CHEN, P FENG H, B YU. et al. Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods. Electrochimica Acta, 56, 3079-3084(2011).
[34] P GUPTA R, D IYORE O, H LEE T et al. Interface characterization of nickel contact to bulk bismuth telluride selenide. Surf. Interface Analysis, 41, 440-444(2009).
[35] I MLAVSKY A, M WEINSTEIN. Bonding of lead telluride to pure iron electrodes. Rev. Sci. Instrum., 33, 1119-1120(1962).
[36] S BHATTACHARYA, A SINGH, C THINAHARAN et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85). J. Phys. D: Appl. Phys., 42, 1-6(2008).
[37] A LEAVITT F, P MARUDHACHALAM, W MCCOY J et al. Segmented Thermoelectric Module with Bonded Legs. US Patent. Segmented Thermoelectric Module with Bonded Legs. US Patent, A1, 2012(2012).
[38] L CHEN C, F DRYMIOTIS, H XIA et al. Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications. J. Mater. Sci., 50, 2700-2708(2015).
[39] L CHEN C, F DRYMIOTIS, H XIA et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications. J. Mater. Sci., 49, 1716-1723(2014).
[40] L CHEN C, F DRYMIOTIS, H XIA et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication. J. Electro. Mater., 43, 4064-4069(2014).
[41] L CHEN, Y NODA, M ORIHASHI et al. Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering, 543-546(1998).
[42] R FERRERES X, M NANCARROW, A YAMINI S et al. One-step bonding of Ni electrode to n-type PbTe — a step towards fabrication of thermoelectric generators. Materials and Design, 107, 90-97(2016).
[43] F DRYMIOTIS, C LI C, L LIAO L et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C, 3, 10590-10596(2015).
[44] J GARCIA-CANADAS, A KALTZOGLOU, V POWELL A et al. Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications. J. Electro. Mater., 42, 1369-1374(2013).
[45] C FAN X, M GU, X SHI et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceramics International, 41, 7590-7595(2015).
[46] Y CHO J, R SALVADOR J, Z YE et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys., 16, 12510-12520(2014).
[47] Q BAI S, D CHEN L, F FAN J et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 58, 3876-3878(2004).
[48] R GENG H, Y TENG X, G ZHAO D. Fabrication and reliabilityevaluation of CoSb3/W-Cu thermoelectric element. J. Alloys Compd., 517, 198-203(2012).
[49] W JIANG, Y LI X, G ZHAO D et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation. Journal of Inorganic Materials, 24, 545-548(2009).
[50] M GU, Y LI X, G XIA X et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J. Alloys Compd., 610, 665-670(2014).
[51] Q BAI S, D REN D, S TANG Y et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 30, 256-260(2015).
[52] Q BAI S, M GU, Y HUANG X, G XIA X et al. Study on the interfacial stability of p-type Ti/Ce
[53] T CAILLAT, P FLEURIAL J, J SNYDER G et al. Development of High Efficiency Segmented Thermoelectric Unicouples. Proceedings of 20th Int. Conf. on Thermoelectrics, Beijing, 504, 282-285(2001).
[54] T CAILLAT, C CHI S, P FLEURIAL J. Electrical Contacts for Skutterudite Thermoelectric Materials.US Patent, 20120006376, A1, 2012.
[55] Y GENG H, Q GUO J, T OCHI et al. Development of skutterudite thermoelectric materials and modules. J. Electro. Mater., 41, 1036-1042(2012).
[56] A MUTO, B POUDEL, J YANG et al. Skutterudite unicouple characterization for energy harvesting applications. Adv. Energy Mater., 3, 245-251(2013).
Get Citation
Copy Citation Text
Xiao-Kai HU, Shuang-Meng ZHANG, Fu ZHAO, Yong LIU, Wei-Shu LIU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Device: Contact Interface and Interface Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269
Category: Research Articles
Received: Jun. 21, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: