Acta Optica Sinica, Volume. 42, Issue 17, 1712001(2022)

Review of Research on Computer-Aided Deflectometric Measurement Technology

Zhendong Wu1, Daodang Wang1、*, Yang Ruan1, and Rongguang Liang2
Author Affiliations
  • 1College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • 2James C. Wyant College of Optical Sciences, University of Arizona, Tucson 85721, Arizona, USA
  • show less
    References(86)

    [1] Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 41, 0112001(2021).

    [2] Zhang L, Liu D, Shi T et al. Optical free-form surfaces testing technologies[J]. Chinese Optics, 10, 283-299(2017).

    [3] Wu S, Li R Y, Liu X L et al. On-machine measurement method of processing error based on the mould surface adaptive sampling[J]. Chinese Journal of Scientific Instrument, 37, 83-90(2016).

    [4] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).

    [5] Neal D R, Armstrong D J, Turner W T. Wavefront sensors for control and processing monitoring in optics manufacture[J]. Proceedings of SPIE, 2993, 211-220(1997).

    [6] Rao X J, Ling N, Wang C et al. Application of Hartmann-shack sensor in aspheric process[J]. Acta Optica Sinica, 22, 491-494(2002).

    [7] Quan G Q, An Y Y, Li Q G. Test of large aperture parabola mirror by laser interferometric[J]. Acta Photonica Sinica, 37, 2035-2038(2008).

    [8] Hao Q, Ning Y, Hu Y. Interferometric testing of aspheric surface[J]. Metrology & Measurement Technology, 38, 1-8(2018).

    [9] Shi T, Yang Y Y, Zhang L et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 7, 26-46(2014).

    [10] Burge J H, Kot L B, Martin H M et al. Design and analysis for interferometric measurements of the GMT primary mirror segments[J]. Proceedings of SPIE, 6273, 62730M(2006).

    [11] Dall H E. A null test for paraboloids[J]. Journal of the British Astronomical Association, 57, 201(1947).

    [12] Wyant J C, Bennett V P. Using computer generated holograms to test aspheric wavefronts[J]. Applied Optics, 11, 2833-2839(1972).

    [13] Kin C J, Wyant J. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of the Optical Society of America, 71, 1587(1981).

    [14] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).

    [15] Friedlaender M, Moore D H, Love R et al. Studies with the electron microscope of virus-host relationships in Ehrlich ascites tumor cells. I. the identification and structure of anopheles A virus[J]. The Journal of Experimental Medicine, 102, 361-370(1955).

    [16] Man Y C, Zhang Z Y, Li R G et al. Research on filtering method of phase shifting digital Moiré patterns[J]. Laser & Optoelectronics Progress, 48, 051001(2011).

    [17] Petz M, Ritter R. Reflection grating method for 3D measurement of reflecting surfaces[J]. Proceedings of SPIE, 4399, 35-41(2001).

    [18] Petz M, Tutsch R. Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces[J]. Proceedings of SPIE, 5869, 58691D(2005).

    [19] Asundi A, Zhou W S. Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill[J]. Applied Optics, 37, 5416-5420(1998).

    [20] Perard D, Beyerer J. Three-dimensional measurement of specular free-form surfaces with a structured-lighting reflection technique[J]. Proceedings of SPIE, 3204, 74-80(1997).

    [21] Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[J]. Proceedings of SPIE, 5457, 366-376(2004).

    [22] Xu X Y, Zhang X C, Niu Z Q et al. Extra-detection-free monoscopic deflectometry for the in situ measurement of freeform specular surfaces[J]. Optics Letters, 44, 4271-4274(2019).

    [23] Huerta-Carranza O, Avendaño-Alejo M, Díaz-Uribe R. Null screens to evaluate the shape of freeform surfaces: progressive addition lenses[J]. Optics Express, 29, 27921-27937(2021).

    [24] Niu Z Q, Gao N, Zhang Z H et al. 3D shape measurement of discontinuous specular objects based on advanced PMD with bi-telecentric lens[J]. Optics Express, 26, 1615-1632(2018).

    [25] Zhang X C, Ren Y R, Chen Y N et al. Large-area measurement with stereo deflectometry[C], OTh1B.6(2021).

    [26] Wang R Y, Li D H, Zhang X W et al. Marker-free stitching deflectometry for three-dimensional measurement of the specular surface[J]. Optics Express, 29, 41851-41864(2021).

    [27] Han H, Wu S Q, Song Z et al. 3D reconstruction of the specular surface using an iterative stereoscopic deflectometry method[J]. Optics Express, 29, 12867-12879(2021).

    [28] Zhang H L, Šics I, Ladrera J et al. Displacement-free stereoscopic phase measuring deflectometry based on phase difference minimization[J]. Optics Express, 28, 31658-31674(2020).

    [29] Su P, Parks R E, Wang L R et al. Software configurable optical test system: a computerized reverse Hartmann test[J]. Applied Optics, 49, 4404-4412(2010).

    [30] Graves L R, Choi H, Zhao W C et al. Model-free deflectometry for freeform optics measurement using an iterative reconstruction technique[J]. Optics Letters, 43, 2110-2113(2018).

    [31] Wang D D, Zhang S, Wu R M et al. Computer-aided high-accuracy testing of reflective surface with reverse Hartmann test[J]. Optics Express, 24, 19671-19681(2016).

    [32] Ge R H, Li D H, Zhang X W et al. Phase measuring deflectometry based on calibration of the entrance pupil center of the camera lens[J]. Applied Optics, 61, 1156-1163(2022).

    [33] Niu Z Q, Zhang X C, Ye J Q et al. Flexible one-shot geometric calibration for off-axis deflectometry[J]. Applied Optics, 59, 3819-3824(2020).

    [34] Xu X Y, Zhang X C, Niu Z Q et al. Self-calibration of in situ monoscopic deflectometric measurement in precision optical manufacturing[J]. Optics Express, 27, 7523-7536(2019).

    [35] Wang D D, Gong Z D, Xu P et al. Accurate calibration of geometrical error in reflective surface testing based on reverse Hartmann test[J]. Optics Express, 26, 8113-8124(2018).

    [36] Jiang L L, Zhang X D, Fang F Z et al. Wavefront aberration metrology based on transmitted fringe deflectometry[J]. Applied Optics, 56, 7396-7403(2017).

    [37] Wang D D, Yin Y M, Dou J C et al. Calibration of geometrical aberration in transmitted wavefront testing of refractive optics with deflectometry[J]. Applied Optics, 60, 1973-1981(2021).

    [38] Huang R, Su P, Horne T et al. Optical metrology of a large deformable aspherical mirror using software configurable optical test system[J]. Optical Engineering, 53, 085106(2014).

    [39] Gu Z X, Wang D D, Ruan Y et al. Design and error calibration of an on-axis deflectometric microscope system[J]. Applied Optics, 61, 2856-2863(2022).

    [40] Jiang S, Yang L H, Ren Y J et al. Defect detection in mirror-like object surface based on phase deflection[J]. Laser & Optoelectronics Progress, 57, 031201(2020).

    [41] Qi Z S, Wang Z, Huang J H et al. Phase-modulation combined deflectometry for small defect detection[J]. Applied Optics, 59, 2016-2023(2020).

    [42] Leung Y C, Cai L L. Untangling parasitic reflection in phase measuring deflectometry by multi-frequency phase-shifting[J]. Applied Optics, 61, 208-222(2022).

    [43] DeMars L A, Ramirez-Andrade A H, Porras-Aguilar R et al. Super sensitive phase measurement deflectometry with effective fringe periods beyond the MTF limit[C], OW4A.6(2019).

    [44] Zhang X C, Niu Z Q, Ye J Q et al. Correction of aberration-induced phase errors in phase measuring deflectometry[J]. Optics Letters, 46, 2047-2050(2021).

    [45] Zhao C Y, Burge J H. Orthonormal vector polynomials in a unit circle, part I: basis set derived from gradients of Zernike polynomials[J]. Optics Express, 15, 18014-18024(2007).

    [46] Ettl S, Kaminski J, Knauer M C et al. Shape reconstruction from gradient data[J]. Applied Optics, 47, 2091-2097(2008).

    [47] Zhang H W, Han S J, Liu S G et al. 3D shape reconstruction of large specular surface[J]. Applied Optics, 51, 7616-7625(2012).

    [48] Freischlad K R, Koliopoulos C L. Modal estimation of a wave front from difference measurements using the discrete Fourier transform[J]. Journal of the Optical Society of America A, 3, 1852-1861(1986).

    [49] Li W S, Bothe T, von Kopylow C et al. Evaluation methods for gradient measurement techniques[J]. Proceedings of SPIE, 5457, 300-311(2004).

    [50] Talmi A, Ribak E N. Wavefront reconstruction from its gradients[J]. Journal of the Optical Society of America A, 23, 288-297(2006).

    [51] Swanson R, Lamb M, Correia C et al. Wavefront reconstruction and prediction with convolutional neural networks[J]. Proceedings of SPIE, 10703, 107031F(2018).

    [52] Hu L J, Hu S W, Gong W et al. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 45, 3741-3744(2020).

    [53] DuBose T B, Gardner D F, Watnik A T. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors[J]. Optics Letters, 45, 1699-1702(2020).

    [54] Dou J C, Wang D D, Yu Q Y et al. Deep-learning-based deflectometry for freeform surface measurement[J]. Optics Letters, 47, 78-81(2022).

    [55] Xiang C, Wang D D, Dou J C et al. Sub-aperture stitching deflectometric testing technology for optical surfaces[J]. Infrared and Laser Engineering, 50, 20210105(2021).

    [56] Olesch E, Häusler G, Wörnlein A et al. Deflectometric measurement of large mirrors[J]. Advanced Optical Technologies, 3, 335-343(2014).

    [57] Liu C, Zhang Z H, Gao N et al. Large-curvature specular surface phase measuring deflectometry with a curved screen[J]. Optics Express, 29, 43327-43341(2021).

    [58] Graves L R, Quach H, Choi H et al. Infinite deflectometry enabling 2π-steradian measurement range[J]. Optics Express, 27, 7602-7615(2019).

    [59] Shi Y Q, Chang C X, Liu X H et al. Infrared phase measuring deflectometry by using defocused binary fringe[J]. Optics Letters, 46, 3091-3094(2021).

    [60] Su P, Wang S S, Khreishi M et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 8450, 332-340(2012).

    [61] Zhou T, Chen K, Wei H Y et al. Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry[J]. Applied Optics, 55, 2760-2770(2016).

    [62] Han H, Wu S Q, Song Z. An accurate calibration means for the phase measuring deflectometry system[J]. Sensors, 19, 5377(2019).

    [63] Liu Y, Huang S J, Zhang Z H et al. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry[J]. Scientific Reports, 7, 10293(2017).

    [64] Zhao W C, Zhou M, Liu H T et al. The off-axis aspheric mirror testing based on the fringe reflection technique[J]. Opto-Electronic Engineering, 45, 32-39(2018).

    [65] Yuan T, Zhang F, Tao X P et al. Three-dimensional shape measuring for specular surface based on phase measuring deflectometry[J]. Acta Optica Sinica, 36, 0212004(2016).

    [67] Hong T X, Li D H, Wang R Y et al. Method for measuring the radius of mean curvature of a spherical surface based on phase measuring deflectometry[J]. Applied Optics, 60, 1705-1709(2021).

    [68] Zhang K L, Qian L, Zhu C L. Defect detection in mirror-like surface based on phase measuring deflectometry[J]. Laser & Optoelectronics Progress, 59, 0512004(2022).

    [69] Wang Y X, Zhang Z H, Gao N et al. Compensation method of refraction error caused by transparent display screen in transmissive display dual-screen deflectometric system[J]. Acta Optica Sinica, 42, 0512003(2022).

    [70] Li Y H, Yeh C K, Xu B J et al. A low-cost solution for 3D reconstruction of large-scale specular objects[C], CW4H.3(2021).

    [71] Wang J Z, Xu B J, Wang T F et al. VR eye-tracking using deflectometry[C], CF2E.3(2021).

    [72] Canabal H A, Alonso J. Automatic wavefront measurement technique using a computer display and a charge-coupled device camera[J]. Optical Engineering, 41, 822-826(2002).

    [73] Díaz-Uribe R, Huerta-Carranza O, Rodríguez-Rodríguez M I et al. Testing free forms with optical deflectometry[C], Th5B.1(2018).

    [74] Pan J D, Yan N, Zhu L L et al. Comprehensive defect-detection method for a small-sized curved optical lens[J]. Applied Optics, 59, 234-243(2020).

    [75] Gao J R, Li D H, Lai H et al. Measurement of wavefront aberration of lens based on phase measuring deflectometry[J]. Laser & Optoelectronics Progress, 59, 0212001(2022).

    [76] Wang D D, Xu P, Gong Z D et al. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry[J]. Journal of Optics, 20, 065705(2018).

    [77] Wang D D, Xu P, Wu Z D et al. Simultaneous multisurface measurement of freeform refractive optics based on computer-aided deflectometry[J]. Optica, 7, 1056-1064(2020).

    [78] Häusler G, Richter C, Leitz K H et al. Microdeflectometry: a novel tool to acquire three-dimensional microtopography with nanometer height resolution[J]. Optics Letters, 33, 396-398(2008).

    [79] Lu S H, Hua H. Structured illumination assisted microdeflectometry with optical depth scanning capability[J]. Optics Letters, 41, 4114-4117(2016).

    [80] Gu H T, Wang D D, Gu Z X et al. High-accuracy deflectometric microscope system with a large slope range[J]. Optics Letters, 46, 2011-2014(2021).

    [81] Su X Y, Xue L. Phase unwrapping algorithm based on fringe frequency analysis in Fourier transform profilometry[J]. Optical Engineering, 40, 637-643(2001).

    [82] Wu Y X, Yue H M, Yi J Y et al. Single-shot three-dimensional shape measurement of specular surfaces by orthogonal color fringe pattern reflection technique[J]. Proceedings of SPIE, 9276, 927603(2014).

    [83] Flores J L, Legarda-Saenz R, Garcia-Torales G. Color deflectometry for phase retrieval using phase-shifting methods[J]. Optics Communications, 334, 298-302(2015).

    [84] Trumper I, Choi H, Kim D W. Instantaneous phase shifting deflectometry[J]. Optics Express, 24, 27993-28007(2016).

    [85] Trumper I, Choi H. Instantaneous phase mapping deflectometry for dynamic deformable mirror characterization[J]. Proceedings of SPIE, 10401, 104010S(2017).

    [86] Xie Z M, Wang D D, Gu H T et al. Instantaneous wavefront measurement based on deflectometry[J]. Proceedings of SPIE, 11185, 111850Q(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhendong Wu, Daodang Wang, Yang Ruan, Rongguang Liang. Review of Research on Computer-Aided Deflectometric Measurement Technology[J]. Acta Optica Sinica, 2022, 42(17): 1712001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: May. 11, 2022

    Accepted: Jun. 30, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Wang Daodang (wangdaodang@sina.com)

    DOI:10.3788/AOS202242.1712001

    Topics