Study On Optical Communications, Volume. 49, Issue 2, 55(2023)

Research Progress on High-speed Directly Modulated Semiconductor Lasers

Qi TIAN1...2, Yu HAN1,2, Rui-gang ZHANG1,2, and Min-ming ZHANG1,23,* |Show fewer author(s)
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2National Engineering Research Center for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(60)

    [1] Keiser G[M]. Optical Fiber Communications(1991).

    [2] Zhu N H, Shi Z, Zhang Z K et al. Directly Modulated Semiconductor Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-19(2017).

    [3] Matsuo S, Kakitsuka T. Low-operating-energy Directly Modulated Lasers for Short-distance Optical Interconnects[J]. Advances in Optics and Photonics, 10, 567-643(2018).

    [4] Tang J M, Shore K A. 30 Gb/s Signal Transmission over 40-km Directly Modulated DFB-laser-based Single-mode-fiber Links without Optical Amplification and Dispersion Compensation[J]. Journal of Lightwave Technology, 24, 2318-2327(2006).

    [5] Morton P A, Shtengel G E, Tzeng L D et al. 38.5 km Error Free Transmission at 10 Gbit/s in Standard Fibre Using a Low Chirp, Spectrally Filtered, Directly Modulated 1.55 μm DFB Laser[J]. Electronics Letters, 33, 310-311(1997).

    [6] Venghaus, Herbert & Grote, Norbert[M]. Fibre Optic Communication Key Devices: Key Devices(2017).

    [7] Coldren L A, Corzine S W, Mashanovitch M L[M]. Diode Lasers and Photonic Integrated Circuits(2012).

    [8] Ralston J D, Weisser S, Esquivias I et al. Control of Differential Gain, Nonlinear Gain, and Damping Factor for High-speed Application of GaAs-based MQW Lasers[J]. IEEE Journal of Quantum Electronics, 29, 1648-1659(1993).

    [9] Matsui Y, Murai H, Arahira S et al. 30 GHz Bandwidth 1.55-μm Strain-compensated InGaAlAs-InGaAsP MQW Laser[J]. IEEE Photonics Technology Letters, 9, 25-27(1997).

    [10] Casey H C. Temperature Dependence of the Threshold Current Density in InP-Ga0.28In0.72As0.6P0.4 (λ= 1.3 μm) Double Heterostructure Lasers[J]. Journal of Applied Physics, 56, 1959-1964(1984).

    [11] Hong J, Blaauw C, Moore R et al. Strongly Gain-coupled (SGC) Coolerless (-40-+85 ℃) MQW DFB Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 442-448(1999).

    [12] Massara A B, Williams K A, White I H et al. Ridge Waveguide InGaAsP Lasers with Uncooled l0 Gbit/s Operation at 70 ℃[J]. Electronics Letters, 35, 1646-1647(1999).

    [13] White J K, Blaauw C, Firth P et al. 85 ℃ Investigation of Uncooled 10-Gb/s Directly Modulated InGaAsP RWG GC-DFB Lasers[J]. IEEE Photonics Technology Letters, 13, 773-775(2001).

    [14] Bang D, Shim J, Kang J et al. High-temperature and High-speed Operation of a 1.3-μm Uncooled InGaAsP-InP DFB Laser[J]. IEEE Photonics Technology Letters, 14, 1240-1242(2002).

    [15] Van de Walle C G. Band Lineups and Deformation Potentials in the Model-solid Theory[J]. Physical Review B, 39, 1871(1989).

    [16] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band Parameters for III–V Compound Semiconductors and Their Alloys[J]. Journal of Applied Physics, 89, 5815-5875(2001).

    [17] Kobayashi W, Fujiwara N, Tadokoro T et al. Uncooled Operation of 10-/40-Gbit/s 1.55-μm Ectroabsorption Modulator Integrated with Distributed Feedback Laser[J]. NTT Technical Review, 8, 1-8(2010).

    [18] Tsuchiya T, Takemoto D, Taike A et al. Large Number of Periods in Highly Strained InGaAlAs/InGaAlAs MQW Structures Grown by Metalorganic Vapor-phase Epitaxy[C], 47-50(1999).

    [19] Aoki M. 85 ℃-10 Gbit/s Operation of 1.3 μm InGaAlAs MQW-DFB Laser[C], 123-124(2000).

    [20] Nakahara K, Tsuchiya T, Tanaka S et al. 115 ℃, 12.5-Gb/s Direct Modulation of 1.3-μm InGaAlAs-MQW RWG DFB Laser with Notch-free Grating Structure for Datacom Applications[C], PD40(2003).

    [21] Takagi K, Shirai S, Tatsuoka Y et al. 120 ℃ 10-Gb/s Uncooled Direct Modulated 1.3-μm AlGaInAs MQW DFB Laser Diodes[J]. IEEE Photonics. Technology. Letters, 16, 2415-2417(2004).

    [22] Fukamachi T, Shiota T, Kitatani K et al. 95 ℃ Uncooled and High Power 25-Gbps Direct Modulation of InGaAlAs Ridge Waveguide DFB Laser[C], 1-2(2009).

    [23] Fukamachi T, Adachi K, Shinoda K et al. Recent Progress in 1.3-μm Uncooled InGaAlAs Directly Modulated Lasers[C], 189-190(2010).

    [24] Tadokoro T, Yamanaka T, Kano F et al. Operation of a 25-Gbps Direct Modulation Ridge Waveguide MQW-DFB Laser up to 85 ℃[C], OThT3(2009).

    [25] Nakahara K, Tsuchiya T, Kitatani T et al. High Extinction Ratio Operation at 40-Gb/s Direct Modulation in 1.3-μm InGaAlAs-MQW RWG DFB Lasers[C], OWC5(2006).

    [26] Nakahara K, Tsuchiya T, Kitatani T et al. 40-Gb/s Direct Modulation with High Extinction Ratio Operation of 1.3-μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers[J]. IEEE Photonics Technology Letters, 19, 1436-1438(2007).

    [27] Otsubo K, Matsuda M, Takada K et al. Uncooled 25 Gbit/s Direct Modulation of Semi-insulating Buried-heterostructure 1.3 μm AlGaInAs Quantum-well DFB Lasers[J]. Electronics Letters, 44, 631-633(2008).

    [28] Yamamoto T, Uetake A, Otsubo K et al. Uncooled 40-Gbps Direct Modulation of 1.3-μm-wavelength AlGaInAs Distributed Reflector Lasers with Semi-insulating Buried-heterostructure[C], 193-194(2010).

    [29] Otsubo K, Matsuda M, Takada K et al. 40-Gb/s Direct Modulation of 1.3-μm Semi-insulating Buried-heterostructure AlGaInAs MQW DFB Lasers[C], 19-20(2008).

    [30] Otsubo K, Matsuda M, Okumura S et al. Low-driving-current High-speed Direct Modulation up to 40 Gb/s Using 1.3-μm Semi-insulating Buried-heterostructure AlGaInAs-MQW Distributed Reflector (DR) Lasers[C], OThT6(2009).

    [31] Nakahara K, Wakayama Y, Kitatani T et al. Direct Modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs Ridge-Shaped-BH DFB Lasers[J]. IEEE Photonics Technology Letters, 27, 534-536(2014).

    [32] Sato H. Highly Reliable 1.3 μm InGaAlAs Buriedheterostructure Laser Fabricated with in-situ Cleaning[J]. Electronics Letters, 40, 1(2004).

    [33] Paoletti R, Agresti M, Bertone D et al. Uncooled 20 Gbit/s Direct Modulation of High Yield, Highly Reliable 1 300 nm InGaAlAs Ridge DFB Lasers[C], 1-3(2009).

    [34] Fukamachi T, Adachi K, Shinoda K et al. Wide Temperature Range Operation of 25-Gb/s 1.3-μm InGaAlAs Directly Modulated Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1138-1145(2011).

    [35] Sasada N, Nakajima T, Sekino Y et al. Wide-temperature-range (25–80 ℃) 53-Gbaud PAM4 (106-Gb/s) Operation of 1.3-μm Directly Modulated DFB Lasers for 10-km Transmission[J]. Journal of Lightwave Technology, 37, 1686-1689(2019).

    [36] Han Y, Tian Q, Yang S et al. Direct Modulation Bandwidth Enhancement of Uncooled DFB Laser Operating over a Wide Temperature Range based on Groove-in-trench Waveguide Structure[J]. Optics Express, 30, 15757-15765(2022).

    [37] Yagi H, Koyama K, Onishi Y et al. 26 Gbit/s Direct Modulation of AlGaInAs/InP Lasers with Ridge-waveguide Structure Buried by Benzocyclobutene Polymer[C], 371-374(2009).

    [38] Kobayashi W, Ito T, Yamanaka T et al. 50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-based DFB Laser with a Ridge Waveguide Structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1-8(2013).

    [39] Vahala K, Yariv A. Detuned Loading in Coupled Cavity Semiconductor Lasers—Effect on Quantum Noise and Dynamics[J]. Applied Physics Letters, 45, 501-503(1984).

    [40] Chaciński M, Schatz R. Impact of Losses in the Bragg Section on the Dynamics of Detuned Loaded DBR Lasers[J]. IEEE Journal of Quantum Electronics, 46, 1360-1367(2010).

    [41] Feiste U. Optimization of Modulation Bandwidth in DBR Lasers with Detuned Bragg Reflectors[J]. IEEE Journal of Quantum Electronics, 34, 2371-2379(1998).

    [42] Huang J, Li C, Lu R et al. Beyond the 100 Gbaud Directly Modulated Laser for Short Reach Applications[J]. Journal of Semiconductors, 42, 041306(2021).

    [43] Chang F[M]. Datacenter Connectivity Technologies: Principles and Practice(2019).

    [44] Radziunas M, Glitzky A, Bandelow U et al. Improving the Modulation Bandwidth in Semiconductor Lasers by Passive Feedback[J]. IEEE Journal of Selected topics in Quantum Electronics, 13, 136-142(2007).

    [45] Troppenz U, Kreissl J, Moehrle M et al. 40 Gbit/s Directly Modulated Lasers: Physics and Application[C], 7953, 98-107(2011).

    [46] Kreissl J, Vercesi V, Troppenz U et al. Up to 40 Gbit/s Directly Modulated Laser Operating at Low Driving Current: Buried-heterostructure Passive Feedback Laser (BH-PFL)[J]. IEEE Photonics Technology Letters, 24, 362-364(2011).

    [47] Brox O, Bauer S, Radziunas M et al. High-frequency Pulsations in DFB Lasers with Amplified Feedback[J]. IEEE Journal of Quantum Electronics, 39, 1381-1387(2003).

    [48] Bauer S, Brox O, Kreissl J et al. Nonlinear Dynamics of Semiconductor Lasers with Active Optical Feedback[J]. Physical Review E, 69, 016206(2004).

    [49] Yu L, Guo L, Lu D et al. Modulated Bandwidth Enhancement in an Amplified Feedback Laser[J]. Chinese Optics Letters, 13, 49-53(2015).

    [50] Mieda S, Yokota N, Kobayashi W et al. Ultra-wide-bandwidth Optically Controlled DFB Laser with External Cavity[J]. IEEE Journal of Quantum Electronics, 52, 1-7(2016).

    [51] Bardella P, Montrosset I. A New Design Procedure for DBR Lasers Exploiting the Photon–photon Resonance to Achieve Extended Modulation Bandwidth[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502408-1502408(2013).

    [52] Morthier G, Schatz R, Kjebon O. Extended Modulation Bandwidth of DBR and External Cavity Lasers by Utilizing a Cavity Resonance for Equalization[J]. IEEE Journal of Quantum Electronics, 36, 1468-1475(2000).

    [53] Kjebon O, Schatz R, Lourdudoss S et al. Two-section InGaAsP DBR-lasers at 1.55 μm Wavelength with 31 GHz Direct Modulation Bandwidth[C], 665-668(1997).

    [54] Reithmaier J P, Kaiser W, Bach L et al. Modulation Speed Enhancement by Coupling to Higher Order Resonances: a Road Towards 40 GHz Bandwidth Lasers on InP[C], 118-123(2005).

    [55] Matsui Y, Schatz R, Pham T et al. 55 GHz Bandwidth Distributed Reflector Laser[J]. Journal of Lightwave Technology, 35, 397-403(2017).

    [56] Liu G, Zhao G, Sun J et al. Experimental Demonstration of DFB Lasers with Active Distributed Reflector[J]. Optics Express, 26, 29784-29795(2018).

    [57] Che D, Matsui Y, Chen X et al. 400-Gb/s Direct Modulation Using a DFB+ R Laser[J]. Optics Letters, 45, 3337-3339(2020).

    [58] Matsui Y, Schatz R, Che D et al. Isolator-free> 67-GHz Bandwidth DFB+ R laser with Suppressed Chirp[C], Th4A. 1(2020).

    [59] Matsui Y, Schatz R, Che D et al. Low-chirp Isolator-free 65-GHz-bandwidth Directly Modulated Lasers[J]. Nature Photonics, 15, 59-63(2021).

    [60] Yamaoka S, Diamantopoulos N P, Nishi H et al. Directly Modulated Membrane Lasers with 108 GHz Bandwidth on a High-thermal-conductivity Silicon Carbide Substrate[J]. Nature Photonics, 15, 28-35(2021).

    Tools

    Get Citation

    Copy Citation Text

    Qi TIAN, Yu HAN, Rui-gang ZHANG, Min-ming ZHANG. Research Progress on High-speed Directly Modulated Semiconductor Lasers[J]. Study On Optical Communications, 2023, 49(2): 55

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 17, 2022

    Accepted: --

    Published Online: Apr. 24, 2023

    The Author Email: ZHANG Min-ming (mmz@hust.edu.cn)

    DOI:10.13756/j.gtxyj.2023.02.009

    Topics